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Introduction

The notion of discrete conformal equivalence of triangle meshes was introduced by Luo [45]
and elaborated in detail by Springborn et al. [69] and Bobenko et al. [13]. Two combinatorially
equivalent euclidean triangle meshes are conformally equivalent if there exist scale factors
associated to vertices such that corresponding edge lengths are equal up to multiplication with
adjacent scale factors. The problem of finding a discrete conformal map from a triangulated
surface to the plane is formulated in terms of a variational principle using scale factors as
variables.

Whereas the theoretical foundations of discrete conformal mappings via discrete conformal
equivalence were arranged in previous work, this thesis focuses on the experimental side of
the theory. In the spirit of discrete differential geometry we look at theorems and constructions
from the geometry of Riemann surfaces and find analogous discrete constructions with similar
properties. We investigate the generalization to cyclic polyhedral surfaces, which was only
touched upon in previous work. We also give details on the spherical version of the theory that
was put aside previously.

This thesis is divided into three parts.

Part I covers the discrete uniformization of Riemann surfaces via conformal equivalence of cyclic
polyhedral surfaces. We generalize the previously established variational principles accordingly
and present a wealth of constructions and examples. Taken from smooth differential geometry
and translated to the discrete setting we observe properties known from classic theorems.
This culminates in a theorem about hyperelliptic Riemann surfaces. A Riemann surface is
hyperelliptic if and only if the axes of the uniformization group elements meet in a common
point for a suitable basis of the group, see Figure 1 right. The tools created in the development
of the methods used in this part lay the foundations for the applications presented in Part II.

In Part II we present three applications of discrete conformal mappings in the context of archi-
tectural geometry. In Chapter 2 we calculate regular patterns on architectural facade geometries
with a period. We investigate how different boundary conditions affect the local behavior of the
map. The resulting map is used to create new meshes with regular faces such as hexagons. We
show how these meshes can be optimized towards a facade panel layout that can be fabricated
in an efficient manner, see Figure 2 left.

In Chapter 3 we exploit the fact that isothermic surfaces possess a conformal curvature line
parametrization to create meshes with planar quadrilaterals and touching incircles. This prob-
lem is formulated as a boundary value problem of discrete conformal maps. As a result we
obtain circle pattern representations of surfaces relevant in the architectural context, see Figure 2
right.

In Chapter 4 we use discrete conformal maps as initialization for discrete Tschebyshev meshes,

1



2 INTRODUCTION

Figure 1: Discrete uniformizations of Riemann surfaces. Left: Region with four boundary
components is mapped conformally to a domain bounded by circles, see Section 1.5.1. Middle:
Uniformization of a discrete version of an elliptic curve. The image is a flat torus, see Sec-
tion 1.7.2. Right: Uniformization of a hyperelliptic algebraic curve with a regular fundamental
domain, see Section 1.8.3.
Diskrete Uniformisierungen von Riemannschen Flächen. Links: Ein Gebiet mit vier Randkomponenten
wird auf einen von Kreisen begrenzten Bereich abgebildet, siehe Abschnitt 1.5.1. Mitte: Uniformisierung
einer diskret elliptischen Kurve. Das Bild ist ein flacher Torus, siehe Abschnitt 1.7.2. Rechts: Uni-
formisierung einer hyperelliptischen algebraischen Kurve mit einem regulären Fundamentalpolygon,
siehe Abschnitt 1.8.3.

Figure 2: Two applications of discrete conformal mappings in architectural geometry. Left: A
panel layout on a facade structure with size-quantized regular hexagons, see Chapter 2. Right:
A circle pattern on a roof structure. We calculate discrete s-isothermic parameterizations for
surfaces that are close to isothermic. The resulting meshes exhibit planar faces. The mesh layout
follows the directions of principle curvature, see Chapter 3.
Zwei Anwendungen von diskret konformen Abbildungen in der Architekturgeometrie. Links: Ein Pa-
neellayout auf einer architektonischen Fassadenoberfläche. Die Paneele sind größenquantisierte reguläre
Sechsecke, siehe Kapitel 2. Rechts: Kreismuster auf einer Dachoberfläche. In Kapitel 3 berechnen wir
diskrete s-isotherme Parametrisierungen für Flächen, die nahe an Isothermflächen sind. Die Ergebnisnetze
haben ebene Facetten, die Kanten folgen den Hauptkrümmungsrichtungen der Fläche.



3

i.e., meshes with edges of equal length. Starting from a discrete conformal map, we perform
non-linear optimization on quadrilateral meshes. In doing so we control the curvature and
intersection angles of parameter curves in the resulting gridshell construction.

The third part of this work introduces the reader to the software framework built for calculation
with discrete surfaces and in particular with discrete conformal mappings, see Chapter 8 about
ConformalLab, and discrete surface optimization, Chapter 9 about VaryLab. Additionally the
author has implemented the software packages HalfEdge and HalfEdgeTools, see Chapter 7,
designed as a general tool for the calculation with discrete surfaces. Together with the user
interface library JRWorkspace, Chapter 6, it constitutes a flexible framework for the creation of
research applications in the context of discrete differential geometry.

The digital data accompanying this work includes most of the examples presented in Chapter 1
and the main files for the architectural applications. Additionally we include the current state
of the source code of the programming framework presented in Part III. The organization of the
data is presented in the appendix.

Deutsche Übersetzung

Diskret konforme Äquivalenz von Dreiecksnetzen wurde von Luo eingeführt [45] und von
Springborn et al. [69] sowie Bobenko et al. [13] ausführlich behandelt. Zwei euklidische Trian-
gulierungen mit gleicher Konnektivität sind diskret konform äquivalent, wenn es Faktoren pro
Ecke gibt, so dass entsprechende Kanten bis auf Multiplikation mit den Faktoren die gleiche
Länge haben. Die konforme Abbildung von triangulierten Flächen auf ebene Gebiete ist mit
Hilfe eines Variationsprinzips auf den Skalierungsfaktoren formuliert.

Wir konzentrieren uns in dieser Abhandlung auf die experimentellen Aspekte der Theorie und
stützen uns dabei auf die theoretischen Grundlagen aus den genannten Arbeiten. Ganz im
Geiste der diskreten Differentialgeometrie untersuchen wir Aussagen und Konstruktionen aus
der Differentialgeometrie von glatten Flächen und versuchen diese in den diskreten Strukturen
wieder zu finden.

Diese Abhandlung ist in drei Teile aufgeteilt, wovon der erste die konformen Abbildungen
behandelt, der andere Anwendungen der Selbigen in der Architektur enthält und der dritte die
Implementation der verwendeten Methoden in einer Software beschreibt.

Im ersten Teil beschreiben wir die diskrete Uniformisierung von Riemannschen Flächen mit-
tels diskret konformer Äquivalenz von zyklisch polyedrischen Flächen. Wir verallgemeinern
dafür die bekannte Theorie der diskret konformen Dreiecksnetze auf zyklisch polyedrische
Flächen. Dieser Teil der Theorie wurde in vorangegangenen Arbeiten nur kurz berührt. Weiter
beleuchten wir den sphärischen Teil der Theorie, welcher bisher nicht behandelt worden ist.
Dieser Teil enthält einen Satz über hyperelliptische Riemannsche Flächen: Eine Riemannsche
Fläche ist hyperelliptisch genau dann, wenn es eine Basis der Uniformisierungsgruppe gibt,
deren hyperbolische Achsen sich in einem gemeinsamen Punkt schneiden, siehe auch Abbil-
dung 1 rechts. Die Methoden aus diesem Abschnitt bilden die Grundlage für die Anwendungen
in Teil II.

Der zweite Teil enthält Anwendungen von konformen Abbildungen in der Architekturgeome-
trie. In Kapitel 2 werden reguläre Muster auf architektonischen Fassaden berechnet. Dafür
verwenden wir periodische diskret konforme Abbildungen. Wir untersuchen, wie Randbedin-
gungen das lokale Verhalten der Abbildungen beeinflussen. Am Ende verwenden wir diese Ab-
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bildungen, um die Geometrie von regulären Paneelen, zum Beispiel Sechsecken, zu bestimmen.
Wir beschreiben, wie diese Netze weiter optimiert werden um Paneele effizient produzieren zu
können, siehe auch Abbildung 2 links.

In Kapitel 3 nutzen wir die Tatsache aus, dass Isothermflächen nach Krümmungslinien
parametrisierbar sind. Wir berechnen s-isotherme Netze auf architektonischen Flächen, das
sind Netze, deren ebene Facetten "sich an den Kanten berührende" Kreise besitzen. Dieses
Problem ist als Randwertproblem von diskret konformen Abbildungen formuliert.

Kapitel 4 gibt eine Einführung in das Konzept der architektonischen Gitterschalen. Geometrisch
sind das Netze mit gleich langen Kanten. Ausgehend von diskret konformen Abbildungen
berechnen wir diese Strukturen mittels nicht-linearer Optimierung von Vierecksnetzen.

Der dritte Teil führt den Leser in das Software-Framework ein, welches für Berechnungen
an diskreten Flächen und speziell konformen Abbildungen entworfen wurde, siehe hierfür
Kapitel 8 über ConformalLab. Der Teil, der sich mit nicht-linearer Optimierung von diskreten
Flächen beschäftigt, ist im Kapitel 9 über VaryLab beschrieben.

Der Autor hat weiter die Bibliotheken HalfEdge and HalfEdgeTools entworfen, siehe Kapitel 7.
Diese sind als allgemeine Werkzeuge für Berechnungen an diskreten Fächen konzipiert. Zusam-
men mit der Oberflächenbibliothek JRWorkspace, Kapitel 6, bilden sie ein flexibles Framework
für den Entwurf komplexer Forschungsanwendungen im Bereich der diskreten Differentialge-
ometrie.

Diese Arbeit enthält eine CD mit den digitalen Daten der meisten Beispiele aus Kapitel 1 und
den architektonischen Anwendungen aus Teil II. Zusätzlich ist der Quellcode der, in Teil III
beschriebenen, Software in seiner aktuellen Fassung, sowie einer kompilierten, lauffähigen
Version enthalten. Die Struktur dieser Daten ist im Anhang beschrieben.
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Chapter 1

Discrete uniformization of Riemann
surfaces

1.1 Introduction

In this chapter we investigate various applications of discrete conformal maps. It is a joint effort
of Alexander Bobenko, Boris Springborn, and the author. Most of its content is also available
in the article [14]. We build upon the work of Bobenko, Pinkall, and Springborn [13] and
Springborn, Schröder, and Pinkall [69]. We present examples for uniformizations of Riemann
surfaces of genus 0, 1, and g > 1 based on this theory, see Figure 1.1.

The notion of discrete conformal equivalence for polyhedral surfaces is based on a simple
definition: Two polyhedral surfaces are discretely conformally equivalent if the edge lengths
are related by scale factors assigned to the vertices. It leads to a surprisingly rich theory [45, 13,
28, 29].

We extend the notion of discrete conformal equivalence from triangulated surfaces to polyhedral
surfaces with faces that are inscribed in circles. The basic definitions and their immediate
consequences are discussed in Section 1.2.

In Section 1.3, we generalize a variational principle for discretely conformally equivalent tri-
angulations [13] to the polyhedral setting. This variational principle is the main tool for all
our numerical calculations. It is also the basis for our uniqueness proof for discrete conformal
mapping problems (Theorem 1.3.9).

Section 1.4 is concerned with the special case of quadrilateral meshes. We discuss the emergence
of orthogonal circle patterns, a peculiar necessary condition for the existence of solutions for
boundary angle problems, and we extend the method of constructing discrete Riemann maps
from triangulations to quadrangulations.

In Section 1.5, we briefly discuss discrete conformal maps from multiply connected domains to
circle domains, and special cases in which we can map to slit domains.

Section 1.6 deals with conformal mappings onto the sphere. We generalize the method for
triangulations to quadrangulations, and we explain how the spherical version of the variational
principle can in some cases be used for numerical calculations although the corresponding
functional is not convex.

7
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data/introduction/genus{0/1/3}_data.xml

Figure 1.1: Uniformization of compact Riemann surfaces. The uniformization of spheres is
treated in Section 1.6. Tori are covered in Section 1.7, and Section 1.8 is concerned with surfaces
of higher genus.
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Section 1.7 is concerned with the uniformization of tori, i.e., the representation of Riemann
surfaces as a quotient space of the complex plane modulo a period lattice. We consider Riemann
surfaces represented as immersed surfaces in R3, and as elliptic curves. We conduct numerical
experiments to test the conjectured convergence of discrete conformal maps. We consider
the difference between the true modulus of an elliptic curve (which can be calculated using
hypergeometric functions) and the modulus determined by discrete uniformization, and we
estimate the asymptotic dependence of this error on the number of vertices.

In Section 1.8, we consider the Fuchsian uniformization of Riemann surfaces represented in
different forms. We consider immersed surfaces in R3 (and S3), hyperelliptic curves, and
Riemann surfaces represented as a quotient of Ĉmodulo a classical Schottky group. That is, we
convert from Schottky uniformization to Fuchsian uniformization. The Section ends with two
extended examples demonstrating, among other things, a remarkable geometric characterization
of hyperelliptic surfaces due to Schmutz Schaller.

This text is accompanied by a compact disk which contains the data for all of the examples
presented in this part of the work. Where applicable, we give the path to the data on the disk
directly under the corresponding figure. We describe the usage of the software and the XML
data format that was used to create all the results in Chapter 8.

1.2 Discrete conformal equivalence of cyclic polyhedral sur-
faces

1.2.1 Cyclic polyhedral surfaces

A euclidean polyhedral surface is a surface obtained from gluing euclidean polygons along their
edges. (A surface is a connected two-dimensional manifold, possibly with boundary.) In other
words, a euclidean polyhedral surface is a surface equipped with, first, an intrinsic metric that
is flat except at isolated points where it has cone-like singularities, and, second, the structure of
a CW complex with geodesic edges. The set of vertices contains all cone-like singularities. If the
surface has a boundary, the boundary is polygonal and the set of vertices contains all corners of
the boundary.

Hyperbolic polyhedral surfaces and spherical polyhedral surfaces are defined analogously. They are
glued from polygons in the hyperbolic and elliptic planes, respectively. Their metric is locally
hyperbolic or spherical, except at cone-like singularities.

We will only be concerned with polyhedral surfaces whose faces are all cyclic, i.e., inscribed
in circles. We call them cyclic polyhedral surfaces. More precisely, we require the polygons to
be cyclic before they are glued together. It is not required that the circumcircles persist after
gluing; they may be disturbed by cone-like singularities. A polygon in the hyperbolic plane is
considered cyclic if it is inscribed in a curve of constant curvature. This may be a circle (the
locus of points at constant distance from its center), a horocycle, or a curve at constant distance
from a geodesic.

A triangulated surface, or triangulation for short, is a polyhedral surface all of whose faces are
triangles. All triangulations are cyclic.
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1.2.2 Notation

We will denote the sets of vertices, edges, and faces of a CW complexΣ by VΣ, EΣ, and FΣ, and we
will often omit the subscript when there is no danger of confusion. For notational convenience,
we require all CW complexes to be strongly regular. This means that we require that faces are not
glued to themselves along edges or at vertices, that two faces are not glued together along more
than one edge or one vertex, and that edges have distinct end-points and two edges have at
most one endpoint in common. This allows us to label edges and faces by their vertices. We will
write ij ∈ E for the edge with vertices i, j ∈ V and ijkl ∈ F for the face with vertices i, j, k, l ∈ V.
We will always list the vertices of a face in the correct cyclic order, so that for example the face
ijkl has edges ij, jk, kl, and li. The only reason for restricting our discussion to strongly regular
CW complexes is to be able to use this simple notation. Everything we discuss applies also to
general CW complexes.

1.2.3 Discrete metrics

The discrete metric of a euclidean (or hyperbolic or spherical) cyclic polyhedral surface Σ is the
function ℓ : EΣ → R>0 that assigns to each edge ij ∈ EΣ its length ℓij. It satisfies the polygon
inequalities (one side is shorter than the sum of the others):

−ℓi1i2 + ℓi2i3+ . . . + ℓin−1in > 0
ℓi1i2 − ℓi2i3+ . . . + ℓin−1in > 0

...

ℓi1i2 + ℓi2i3+ . . . − ℓin−1in > 0


for all i1i2 . . . in ∈ FΣ (1.1)

In the case of spherical polyhedral surfaces, we also require that

ℓi1i2 + ℓi2i3 + . . . + ℓin−1in < 2π. (1.2)

The polygon inequalities (1.1) are necessary and sufficient for the existence of a unique cyclic
euclidean polygon and a unique cyclic hyperbolic polygon with the given edge lengths. Together
with inequality (1.2) they are necessary and sufficient for the existence of a unique cyclic spherical
polygon. For a new proof of these elementary geometric facts, see [38]. Thus, a discrete metric
determines the geometry of a cyclic polyhedral surface:

Proposition and Definition 1.2.1. If Σ is a surface with the structure of a CW complex and a function
ℓ : EΣ → R>0 satisfies the polygon inequalities (1.1), then there is a unique euclidean cyclic polyhedral
surface and also a unique hyperbolic cyclic polyhedral surface with CW complex Σ and discrete metric ℓ.
If ℓ also satisfies the inequalities (1.2), then there is a unique spherical cyclic polyhedral surface with
CW complex Σ and discrete metric ℓ.

We will denote the euclidean, hyperbolic, and spherical polyhedral surface with CW complex Σ and
discrete metric ℓ by (Σ, ℓ)euc, (Σ, ℓ)hyp, and (Σ, ℓ)sph, respectively.

1.2.4 Discrete conformal equivalence

We extend the definition of discrete conformal equivalence from triangulations [45, 13] to cyclic
polyhedral surfaces in a straightforward way (Definition 1.2.2). While some aspects of the theory
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carry over to the more general setting (e.g., Möbius invariance, Proposition 1.2.5), others do not,
like the characterization of discretely conformally equivalent triangulations in terms of length
cross-ratios (Section 1.2.5). We will discuss similar characterizations for polyhedral surfaces
with 2-colorable vertices and the particular case of quadrilateral faces in Sections 1.2.7 and 1.2.8.

We define discrete conformal equivalence only for polyhedral surfaces that are combinatorially
equivalent (see Remark 1.2.4). Thus, we may assume that the surfaces share the same CW
complex Σ equipped with different metrics ℓ, ℓ̃.

Definition 1.2.2. Discrete conformal equivalence is an equivalence relation on the set of cyclic
polyhedral surfaces defined as follows:

• Two euclidean cyclic polyhedral surfaces (Σ, ℓ)euc and (Σ, ℓ̃)euc are discretely conformally equiva-
lent if there exists a function u : VΣ → R such that

ℓ̃ij = e
1
2 (ui+u j)ℓij. (1.3)

• Two hyperbolic cyclic polyhedral surfaces (Σ, ℓ)hyp and (Σ, ℓ̃)hyp are discretely conformally equiv-
alent if there exists a function u : VΣ → R such that

sinh
 ℓ̃ij

2


= e

1
2 (ui+u j) sinh

ℓij
2


. (1.4)

• Two spherical cyclic polyhedral surfaces (Σ, ℓ)sph and (Σ, ℓ̃)sph are discretely conformally equivalent
if there exists a function u : VΣ → R such that

sin
 ℓ̃ij

2


= e

1
2 (ui+u j) sin

ℓij
2


. (1.5)

We will also consider mixed versions:

• A euclidean cyclic polyhedral surface (Σ, ℓ)euc and a hyperbolic cyclic polyhedral surface (Σ, ℓ̃)hyp are
discretely conformally equivalent if

sinh
 ℓ̃ij

2


= e

1
2 (ui+u j)ℓij. (1.6)

• A euclidean cyclic polyhedral surface (Σ, ℓ)euc and a spherical cyclic polyhedral surface (Σ, ℓ̃)sph are
discretely conformally equivalent if

sin
 ℓ̃ij

2


= e

1
2 (ui+u j)ℓij. (1.7)

• A hyperbolic cyclic polyhedral surface (Σ, ℓ)hyp and a spherical cyclic polyhedral surface (Σ, ℓ̃)sph are
discretely conformally equivalent if

sin
 ℓ̃ij

2


= e

1
2 (ui+u j) sinh

ℓij
2


. (1.8)

Remark 1.2.3. Note that relation (1.5) for spherical edge lengths is equivalent to relation (1.3) for the
euclidean lengths of the chords in the ambientR3 of the sphere (see Figure 1.2, left). Likewise, relation (1.4)
for hyperbolic edge lengths is equivalent to (1.3) for the euclidean lengths of the chords in the ambient
R2,1 of the hyperboloid model of the hyperbolic plane (see Figure 1.2, right).
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2 sin ℓ2

ℓ

ℓ

2 sinh ℓ2

Figure 1.2: Spherical and hyperbolic chords.

lcrijk l

ℓljℓjk

j

i

ℓilℓki

Figure 1.3: Length cross-ratio.

Remark 1.2.4. For triangulations, the definition of discrete conformal equivalence has been extended to
meshes that are not combinatorially equivalent [13, Definition 5.1.4] [28, 29]. It is not clear whether or
how the following definitions for cyclic polyhedral surfaces can be extended to combinatorially inequivalent
CW complexes.

The discrete conformal class of a cyclic polyhedral surface embedded in n-dimensional euclidean
space is invariant under Möbius transformations of the ambient space:

Proposition 1.2.5 (Möbius invariance). Suppose P and P̃ are two combinatorially equivalent euclidean
cyclic polyhedral surfaces embedded in Rn (with straight edges and faces), and suppose there is a Möbius
transformation of Rn

∪ {∞} that maps the vertices of P to the corresponding vertices of P̃. Then P and P̃
are discretely conformally equivalent.

Note that only vertices are related by the Möbius transformation, not edges and faces, which
remain straight. The simple proof for the case of triangulations [13] carries over without change.

1.2.5 Triangulations: Characterization by length cross-ratios

For euclidean triangulations, there is an alternative characterization of conformal equivalence
in terms of length cross-ratios [13]. We review the basic facts in this section.

For two adjacent triangles ijk ∈ F and jil ∈ F (see Figure 1.3), the length cross-ratio of the common
interior edge ij ∈ E is defined as

lcrij =
ℓilℓjk
ℓljℓki
. (1.9)

(If the two triangles are embedded in the complex plane, this is just the modulus of the complex
cross-ratio of the four vertices.) This definition of length cross-ratios implicitly assumes that an
orientation has been chosen on the surface. For non-orientable surfaces, the length cross-ratio
is well-defined on the oriented double cover.

The product of length cross-ratios around an interior vertex i ∈ V is 1, because all lengths cancel:
ij∋i

lcrij = 1. (1.10)

Proposition 1.2.6. Two euclidean triangulations (Σ, ℓ)euc and (Σ, ℓ̃)euc are discretely conformally equiv-
alent if and only if for each interior edge ij ∈ Eint

Σ
, the induced length cross-ratios agree.
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Remark 1.2.7. Analogous statements hold for spherical and hyperbolic triangulations. Equation (1.9)
has to be modified by replacing ℓ with sin ℓ2 or sinh ℓ2 , respectively (compare Remark 1.2.3).

1.2.6 Triangulations: Reconstructing lengths from length cross-ratios

To deal with Riemann surfaces that are given in terms of Schottky data (Section 1.8.2) we will
need to reconstruct a function ℓ : EΣ → R>0 satisfying (1.9) from given length cross-ratios. (It
is not required that the function ℓ satisfies the triangle inequalities.) To this end, we define
auxiliary quantities ci

jk attached to the angles of the triangulation. The value at vertex i of the
triangle ijk ∈ F is defined as

ci
jk =

ℓjk
ℓijℓki
. (1.11)

Then (1.9) is equivalent to

lcrij =
ci

jk

ci
lj

. (1.12)

Now, given a function lcr : Eint
→ R>0 defined on the set of interior edges Eint and satisfying the

product condition (1.10) around interior vertices, one can find parameters ci
jk satisfying (1.11) by

choosing one value at each vertex and then successively multiplying length cross-ratios. The
corresponding function ℓ is then determined by

ℓij =
1
ci

jkc j
ki

=
1
ci

ljc
j
il

. (1.13)

1.2.7 Bipartite graphs: Characterization by length multi-ratios

A different characterization of discrete conformal equivalence in terms of length multi-ratios
holds if the 1-skeleton of the polyhedral surface is bipartite, i.e., if the vertices can be colored
with two colors so that no two neighboring vertices share the same color.

Proposition 1.2.8. (i) If two combinatorially equivalent euclidean cyclic polyhedral surfaces (Σ, ℓ)euc and
(Σ, ℓ̃)euc with discrete metrics ℓ and ℓ̃ are discretely conformally equivalent, then the length multi-ratios
for even cycles

i1i2, i2i3, . . . , i2ni1

are equal:
ℓi1i2ℓi3i4 · · · ℓi2n−1i2n

ℓi2i3ℓi4i5 · · · ℓi2ni1
=
ℓ̃i1i2 ℓ̃i3i4 · · · ℓ̃i2n−1i2n

ℓ̃i2i3 ℓ̃i4i5 · · · ℓ̃i2ni1
. (1.14)

(ii) If the 1-skeleton of Σ is bipartite, i.e., if all cycles are even, then this condition is also sufficient: If
the length multi-ratios are equal for all cycles, then the polyhedral surfaces are discretely conformally
equivalent.

Proof. (i) This is obvious, because all scale factors eu cancel. (ii) It is easy to see that equations (1.3)
can be solved for the scale factors eu/2 if the length multi-ratios are equal. Note that the scale
factors are not uniquely determined: They can be multiplied by λ and 1/λ on the two vertex
color classes, respectively. To find a particular solution, one can fix the value of eu/2 at one vertex,
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and find the other values by alternatingly dividing and multiplying by ℓ̃/ℓ along paths. The
equality of length multi-ratios implies that the obtained values do not depend on the path. □

Remark 1.2.9. If a polyhedral surface is simply connected, then its 1-skeleton is bipartite if and only if
all faces are even polygons. If a polyhedral surface is not simply connected, then having even faces is only
a necessary condition for being bipartite.

A polyhedral surface with bipartite 1-skeleton has even faces. If a polyhedral surface has even
faces and is simply connected, then its 1-skeleton is bipartite, and the face boundaries generate
all cycles. Thus, Proposition 1.2.8 implies the following corollary.

Corollary 1.2.10. Two simply connected combinatorially equivalent euclidean cyclic polyhedral surfaces
with even faces and with discrete metrics ℓ and ℓ̃ are discretely conformally equivalent if and only if the
multi-ratio condition (1.14) holds for every face boundary cycle.

Remark 1.2.11. Analogous statements hold for spherical and hyperbolic cyclic polyhedral surfaces. In
the multi-ratio condition, one has to replace non-euclidean lengths ℓ with sin ℓ2 or sinh ℓ2 , respectively
(compare Remark 1.2.3).

1.2.8 Quadrangulations: Cross-ratio system on quad-graphs

The case of cyclic quadrilateral faces is somewhat special (and we will return to it in Section 1.4),
because equal length cross-ratio implies equal complex cross-ratio:

Proposition 1.2.12. If two euclidean polyhedral surfaces with cyclic quadrilateral faces are discretely
conformally equivalent, then corresponding faces ijkl ∈ F have the same complex cross-ratio (when
embedded in the complex plane):

(zi − z j)(zk − zl)
(z j − zk)(zl − zi)

=
(z̃i − z̃ j)(z̃k − z̃l)
(z̃ j − z̃k)(z̃l − z̃i)

Proof. This follows immediately from Proposition 1.2.8: The length multi-ratio of a quadrilateral
is the modulus of the complex cross-ratio. If the (embedded) quadrilaterals are cyclic, then their
complex cross-ratios are real and negative, so their arguments are also equal. □

For planar polyhedral surfaces, i.e., for quadrangulations in the complex plane, Proposi-
tion 1.2.12 connects discrete conformality with the cross-ratio system on quad-graphs. A quad-
graph in the most general sense is simply an abstract CW cell decomposition of a surface with
quadrilateral faces. Often, more conditions are added to the definition as needed. Here, we
will require that the surface is oriented and that the vertices are bicolored black and white. For
simplicity, we will also assume that the CW complex is strongly regular (see Section 1.2.2). The
cross-ratio system on a quad-graph Σ imposes equations (1.15) on variables zi that are attached to
the vertices i ∈ VΣ. There is one equation per face ijkl ∈ FΣ:

(zi − z j)(zk − zl)
(z j − zk)(zl − zi)

= Qijkl, (1.15)

where we assume that i is a black vertex and the boundary vertices ijkl are listed in the positive
cyclic order. (Here we need the orientation). On the right hand side of the equation, Q : FΣ →
C \ {0, 1} is a given function. In particular, it is required that the values zi, z j, zk, zl on a face are
distinct.
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By Proposition 1.2.12, two discretely conformally equivalent planar quadrangulations corre-
spond to two solutions of the cross-ratio system on the same quad-graph with the same cross-
ratios Q. The following proposition says that in the simply connected case, one can find complex
factors w on the vertices whose absolute values |w| = eu/2 govern the length change of edges
according to (1.3), and whose arguments govern the rotation of edges. Note that (1.3) is obtained
from (1.16) by taking absolute values.

Proposition 1.2.13. LetΣ be a simply connected quad-graph. Two functions z, z̃ : VΣ → C are solutions
of the cross-ratio system on Σ with the same cross-ratios Q if and only if there is a function w : VΣ → C
such that for all edges ij ∈ EΣ

z̃ j − z̃i = wiw j(z j − zi). (1.16)

Proof. As in the proof of Proposition 1.2.8, it is easy to see that the system of equations (1.16)
is solvable for w if and only if the complex multi-ratios for even cycles are equal. Because Σ is
simply connected, this is the case if and only if the complex cross-ratios of corresponding faces
are equal. □

Remark 1.2.14. The cross-ratio system on quad-graphs (1.15) is an integrable system (in the sense of
3D consistency [15, 16]) if the cross-ratios Q “factor”, i.e., if there exists a function on the set of edges,
a : EΣ → C, that satisfies the following conditions for each quadrilateral ijkl ∈ F:

(i) It takes the same value on opposite edges,

aij = akl, ajk = ali. (1.17)

(ii)

Qijkl =
aij

ajk
. (1.18)

In Adler, Bobenko & Suris’ classification of integrable equations on quad-graphs [2], the integrable cross-
ratio system is called (Q1)δ=0. It is also known as the discrete Schwarzian Korteweg–de Vries (dSKdV)
equation, especially when it is considered on the regular square lattice [51] with constant cross-ratios.

If the cross-ratios Q have unit modulus, the cross-ratio system on quad-graphs is connected with circle
patterns with prescribed intersection angles [15, 16].

Remark 1.2.15. The system of equations (1.16) is also connected with an integrable system on quad-
graphs. Let bij = z j − zi, so b is a function on the oriented edges with bij = −bji. Let us also assume that
the quad-graph Σ is simply connected. Then the system (1.16) defines a function z : V → C (uniquely up
to an additive constant) if and only if the complex scale factors w : VΣ → C satisfy, for each face ijkl ∈ F
the closure condition

bijwiw j + bjkw jwk + bklwkwl + bliwlwi = 0. (1.19)

This system for w is integrable if, for each face ijkl ∈ F,

bij + bkl = 0 and bjk + bli = 0.

In this case, (1.19) is known as discrete modified Korteweg–de Vries (dmKdV) equation [51], or as Hirota
equation [15, 16].
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1.3 Variational principles for discrete conformal maps

1.3.1 Discrete conformal mapping problems

We will consider the following discrete conformal mapping problems. (The notation (Σ, ℓ)g was
introduced in Definition 1.2.1.)

Problem 1.3.1 (prescribed angle sums). Given

• A euclidean, spherical, or hyperbolic cyclic polyhedral surface (Σ, ℓ)g, where g ∈ {euc, hyp, sph},
• a desired total angle Θi > 0 for each vertex i ∈ VΣ,
• a choice of geometry g̃ ∈ {euc, hyp, sph},

find a discretely conformally equivalent cyclic polyhedral surface (Σ, ℓ̃)g̃ of geometry g̃ that has the desired
total angles Θ around vertices.

For interior vertices, Θ prescribes a desired cone angle. For boundary vertices, Θ prescribes
a desired interior angle of the polygonal boundary. If Θi = 2π for all interior vertices i, then
Problem 1.3.1 asks for a flat metric in the discrete conformal class, with prescribed boundary
angles if the surface has a boundary.

More generally, we will consider the following problem, where the logarithmic scale factors u
(see Definition 1.2.2) are fixed at some vertices and desired angle sums Θ are prescribed at the
other vertices. The problems to find discrete Riemann maps (Section 1.4.2) and maps onto the
sphere (Section 1.6.1) can be reduced to this mapping problem with some fixed scale factors.

Problem 1.3.2 (prescribed scale factors and angle sums). Given

• A euclidean, spherical, or hyperbolic cyclic polyhedral surface (Σ, ℓ)g, where g ∈ {euc, hyp, sph},
• a partition VΣ = V0∪̇V1
• a prescribed angle Θi > 0 for each vertex i ∈ V1,
• a prescribed logarithmic scale factor ui ∈ R for each vertex i ∈ V0,
• a choice of geometry g̃ ∈ {euc, hyp, sph},

find a discretely conformally equivalent cyclic polyhedral surface (Σ, ℓ̃)g̃ of geometry g̃ that has the desired
total angles Θ around vertices in V1 and the fixed scale factors u at vertices in V0.

Note that for V0 = ∅, V1 = V, Problem 1.3.2 reduces to Problem 1.3.1.

1.3.2 Analytic formulation of the mapping problems

We rephrase the mapping Problem 1.3.2 analytically as Problem 1.3.4. The sides of a cyclic
polygon determine its angles, but practical explicit equations for the angles as functions of
the sides exist only for triangles, e.g., (1.21). For this reason it makes sense to triangulate the
polyhedral surface. For the angles in a triangulation, we use the notation shown in Figure 1.4.
In triangle ijk, we denote the angle at vertex i by αi

jk. We denote by βi
ij the angle between the

circumcircle and the edge jk. The angles α and β are related by

αi
jk + β

j
ki + β

k
ij = π,

so betas determine alphas and vice versa:

2βi
jk = π + α

i
jk − α

j
ki − α

k
ij, . . . (1.20)
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Figure 1.4: Notation of lengths and angles in a triangle ijk ∈ F.

For euclidean triangles,

αi
jk + α

j
ki + α

k
ij = π, βi

jk = α
i
jk.

The half-angle equation can be used to express the angles as functions of lengths:

tan

αi
jk

2

 =




(−ℓij + ℓjk + ℓki)(ℓij + ℓjk − ℓki)
(ℓij − ℓjk + ℓki)(ℓij + ℓjk + ℓki)

 1
2

(euc) sinh

(ℓij − ℓjk + ℓki)/2


sinh


(ℓij + ℓjk − ℓki)/2


sinh


(−ℓij + ℓjk + ℓki)/2


sinh


(ℓij + ℓjk + ℓki)/2

 
1
2

(hyp) sin

(ℓij − ℓjk + ℓki)/2


sin


(ℓij + ℓjk − ℓki)/2


sin


(−ℓij + ℓjk + ℓki)/2


sin


(ℓij + ℓjk + ℓki)/2

 
1
2

(sph)

(1.21)

Lemma 1.3.3 (analytic formulation of Problem 1.3.2). Let

• the polyhedral surface (Σ, ℓ)g,
• the partition V0∪̇V1,
• Θi for i ∈ V1,
• ui for i ∈ V0,
• the geometry g̃ ∈ {euc, hyp, sph}

be given as in Problem 1.3.2. Let∆ be an abstract triangulation obtained by adding non-crossing diagonals
to non-triangular faces of Σ. (So VΣ = V∆, EΣ ⊆ E∆, and the set of added diagonals is E∆ \ EΣ.) For
ij ∈ EΣ, define λij by

λij =


2 log ℓij if g = euc
2 log sinh ℓij2 if g = hyp
2 log sin ℓij2 if g = sph

(1.22)

Then solving Problem 1.3.2 is equivalent to solving Problem 1.3.4 with E0 = EΣ and E1 = E∆ \ EΣ.
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Problem 1.3.4. Given

• an abstract triangulation ∆,
• a partition V∆ = V0∪̇V1,
• ui ∈ R for i ∈ V0
• Θi ∈ R>0 for i ∈ V1,
• a partition E∆ = E0∪̇E1,
• λij for ij ∈ E0,
• g̃ ∈ {euc, hyp, sph},

find ui ∈ R for i ∈ V1 and λij for ij ∈ E1 such that

ℓ̃ : E∆ → R>0

defined by
λ̃ij = ui + u j + λij, (1.23)

and

ℓ̃ij =


e

1
2 λ̃ij if g̃ = euc

2 arsinh e
1
2 λ̃ij if g̃ = hyp

2 arcsin e
1
2 λ̃ij if g̃ = sph

(1.24)

satisfies for all ijk ∈ F∆ the triangle inequalities

ℓ̃ij < ℓ̃jk + ℓ̃ki, ℓ̃jk < ℓ̃ki + ℓ̃ij, ℓ̃ki < ℓ̃ij + ℓ̃jk, (1.25)

and for g̃ = sph also
ℓ̃ij + ℓ̃jk + ℓ̃ki < 2π, (1.26)

and such that 
jk:ijk∈F∆

α̃i
jk = Θi for all i ∈ V1, (1.27)

β̃k
ij + β̃

l
ji = π for all ij ∈ E1, (1.28)

where α̃ and β̃ are defined by (1.21) and (1.20) (with α, β, ℓ replaced by α̃, β̃, ℓ̃). Note that for g̃ = sph it
is also required that λ̃ < 0 for ℓ̃ to be well-defined.

Proof of Lemma 1.3.3. Note that (1.27) says that the angle sums at vertices in V1 have the pre-
scribed values, and (1.28) says that neighboring triangles of (∆, ℓ̃)g̃ belonging to the same face of
Σ share the same circumcircle. So deleting the edges in E∆ \ EΣ, one obtains a cyclic polyhedral
surface (Σ, ℓ̃|EΣ )g̃. □

1.3.3 Variational principles

Definition 1.3.5. For an abstract triangulation ∆ and a function Θ ∈ RV∆
>0 , define the three functions

Eeuc
∆,Θ,E

hyp
∆,Θ,E

sph
∆,Θ : RE∆ ×RV∆ −→ R,

(λ,u) →−→ Eg̃
∆,Θ(λ,u)
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by
Eg̃
∆,Θ(λ,u) =


ijk∈F∆


f g̃(λ̃ij, λ̃jk, λ̃ki) −

π
2

(λ̃jk + λ̃ki + λ̃ij)

+


i∈V∆

Θiui, (1.29)

where g̃ ∈ {euc, hyp, sph}, λ̃ is defined as function of λ and u by (1.23), and the functions f euc, f hyp, f sph

are defined in Section 1.3.4.

We will often omit the subscripts and write simply Eeuc,Ehyp,Esph when this is unlikely to cause
confusion.

Definition 1.3.6. We define the feasible regions of the functions Eg̃
∆,Θ as the following open subsets of

their domains:

• The feasible region of Eeuc and Ehyp is the set of all (λ,u) ∈ RE∆ × RV∆ such that ℓ̃ ∈ RE
>0 defined

by (1.23) and (1.24) satisfies the triangle inequalities (1.25)
• The feasible region of Esph is the set of all (λ,u) ∈ RE∆ × RV∆ such that λ̃ defined by (1.23) is

negative, and ℓ̃, which is then well-defined by (1.24), satisfies the triangle inequalities (1.25) and the
inequalities (1.26).

Theorem 1.3.7 (Variational principles). Every solution (Σ, ℓ̃)g̃ of Problem 1.3.2 corresponds via (1.23)
and (1.24) to a critical point (λ,u) ∈ RE∆ ×RV∆ of the function Eg̃

∆,Θ under the constraints that λij and
ui are fixed for ij ∈ E0 and i ∈ V0, respectively. (The triangulation ∆, and E0 = EΣ and E1 = E∆ \ EΣ are
as in Lemma 1.3.3, and the given function Θ is extended from V1 to V by arbitrary values on V0.)

Conversely, if (λ,u) ∈ RE∆ ×RV∆ is a critical point of the function Eg̃
∆,Θ under the same constraints, and

if (λ,u) is contained in the feasible region of Eg̃
∆,Θ, then (Σ, ℓ̃)g̃ defined by (1.23) and (1.24) is a solution

of Problem 1.3.2.

Proof. This follows from the analytic formulation of Problem 1.3.2 (see Section 1.3.2) and Propo-
sition 1.3.8. □

Proposition 1.3.8 (First derivative of Eg̃). The partial derivatives of Eg̃ are

∂Eg̃

∂ui
(λ,u) = Θi −


ijk∋i

α̃i
jk (1.30)

∂Eg̃

∂λij
(λ,u) = β̃k

ij + β̃
l
ij − π. (1.31)

Here α̃, β̃ are defined by (1.21) and (1.20) (with α, β, ℓ replaced by α̃, β̃, ℓ̃) if (λ,u) is contained in the
feasible region of Eg̃. For (λ,u) not contained in the feasible region, the definition of α̃, β̃ is extended like
in Definition 1.3.12.

Proof. Equations (1.30) and (1.31) follow from the definition of Eg̃ and Proposition 1.3.14 on the
partial derivatives of f g. □

Theorem 1.3.9 (Uniqueness for mapping problems). If Problem 1.3.2 with target geometry g̃ ∈
{euc, hyp} has a solution, then the solution is unique — except if g̃ = euc and V0 = ∅ (the case of
Problem 1.3.1). In this case, the solution is unique up to scale.

The critical point (λ,u) ∈ RE∆ × RV∆ that corresponds, via (1.23) and (1.24), to a solution (Σ, ℓ̃)g̃ of
Problem 1.3.2 with g̃ ∈ {euc, hyp} is a minimizer of Eg̃

∆,Θ under the constraints described in Theorem 1.3.7.
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The minimizer is unique except in the following cases. If g̃ = euc and V0 = ∅, then Eg̃
∆,Θ is constant

along all lines in the “scaling direction” (0, 1V∆ ) ∈ RE∆ × RV∆ . If the 1-skeleton of Σ is bipartite and
V0 = ∅, then Eg̃

∆,Θ is constant in the direction that is ±1 on the two color classes of V∆, respectively, and
takes appropriate values on E∆ \ EΣ so that λ̃ij defined by (1.23) remains constant for all ij ∈ E∆. (In
both exceptional cases, one can obtain a unique minimizer by adding the constraint of fixing ui for some
i ∈ V∆.)

Proof. The theorem follows from Theorem 1.3.7 and the following observations.

(1) If the point (λ,u) ∈ RE∆ × RV∆ corresponds to a solution of Problem 1.3.2, it is contained in
the feasible region of Eg̃

∆,Θ.
(2) By (1.29) and Proposition 1.3.16, the functions Eeuc and Ehyp are convex.
(3) For (λ,u) in the feasible region, the second derivative D2Ehyp(λ,u) is a positive defi-

nite quadratic form of dλ̃, i.e., D2Ehyp(λ,u)(λ̇, u̇) ≥ 0 for all (λ̇, u̇) ∈ RE∆ × RV∆ and
D2Ehyp(λ,u)(λ̇, u̇) = 0 if and only if

λ̇ij + u̇i + u̇ j = 0 for all ij ∈ E∆.

(4) Similarly, for (λ,u) in the feasible region, the second derivative D2Eeuc(λ,u) is a positive
semidefinite quadratic form with D2Eeuc(λ,u)(λ̇, u̇) = 0 if and only if

λ̇ij + u̇i + u̇ j = c for all ij ∈ E∆, for some c ∈ R.

□

In the following proposition, we collect explicit formulas for the second derivatives of the
functions Eg̃. They are useful for the numerical minimization of Eeuc and Ehyp, and even for
finding critical points of Esph, as explained in Section 1.6.2.

Proposition 1.3.10 (Second derivative of Eg̃). The second derivatives of Eeuc, Ehyp, and Esph are the
quadratic forms

D2Eg̃(λ,u) =
1
2


ijk∈F∆


qk

ij(λ,u) + qi
jk(λ,u) + q j

ki(λ,u)

,

where qk
ij(λ,u) = 0 if ℓ̃ij, ℓ̃jk, ℓ̃ki defined by (1.23), (1.24) violate the triangle inequalities (1.25), or, in the

case of g̃ = sph, inequality (1.26). Otherwise, the quadratic forms qk
ij(λ,u) are defined by

qk
ij =


cot α̃k

ij (dλki − dλjk + dui − du j)2 (euc)

cot β̃k
ij


(dλik − dλkj + dui − du j)2 + tanh2

 ℓ̃ij
2


(dλij + dui + du j)2


(hyp)

cot β̃k
ij


(dλik − dλkj + dui − du j)2

− tan2
 ℓ̃ij

2


(dλij + dui + du j)2


(sph)

where α̃, β̃ are defined by (1.21) and (1.20) (with α, β, ℓ replaced by α̃, β̃, ℓ̃).

Proposition 1.3.10 follows from (1.29) and Proposition 1.3.15 about the second derivatives of f g.

1.3.4 The triangle functions

This section is concerned with three real valued functions f euc, f hyp, f sph of three variables that
are the main building blocks for the action functions Eeuc, Ehyp, Esph of the variational principles.
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Since we consider single triangles in this section, not triangulations, we can use simpler notation.
For {i, j, k} = {1, 2, 3}, let

λi = λjk, ℓi = ℓjk, αi = α
i
jk, βi = β

i
jk.

The terminology introduced in the following definition makes Definition 1.3.12 easier to state.

Definition 1.3.11. Let the feasible region of f euc and f hyp be the open subset of all λ ∈ R3 such that
ℓ ∈ R3

>0 determined by (1.22) satisfies the triangle inequalities, i.e.,

ℓk < ℓi + ℓ j (1.32)

for {i, j, k} = {1, 2, 3}.

Let the feasible region of f sph be the open subset of all λ ∈ R3 such that λ < 0, and such that ℓ ∈ R3
>0,

which is then well-defined by (1.22), satisfies the triangle inequalities (1.32) and

ℓ1 + ℓ2 + ℓ3 < 2π. (1.33)

Definition 1.3.12. We define the three functions

f euc, f hyp, f sph : R3
→ R

by

f g(λ1, λ2, λ3) = β1λ1 + β2λ2 + β3λ3 +L(α1) +L(α2) +L(α3)

+L(β1) +L(β2) +L(β3) +L


1
2 (π − α1 − α2 − α3)


, (1.34)

where g ∈ {euc, hyp, sph}, L(x) denotes Milnor’s Lobachevsky function [47]

L(x) = −
 x

0
log

2 sin(t)
 dt, (1.35)

and,

• if λ is in the feasible region of f g, then the angles α, β are defined as the angles (shown in Figure 1.4) in a
euclidean, hyperbolic, or spherical triangle (depending on g) with sides ℓ1, ℓ2, ℓ3 determined by (1.22).
That is, α and β are defined by (1.21) and (1.20).

• Otherwise, if g = sph, and if either at least two λs are non-negative or λ < 0 and inequality (1.33) is
violated, let

αk = αi = α j = π, βk = βi = β j = 0.

• Otherwise, if the triangle inequality (1.32) is violated, or if g = sph and λk ≥ 0, let

αk = βk = π, αi = α j = βi = β j = 0.

Figure 1.5 shows a graph of Milnor’s Lobachevsky function. It is continuous, π-periodic, odd,
has zeros at the integer multiples of π/2, and is real analytic except at integer multiples of π,
where the derivative tends to +∞.

Remark 1.3.13. In the euclidean case, (1.34) simplifies to

f euc(λ) = αiλi + α jλ j + αkλk + 2L(αi) + 2L(α j) + 2L(αk). (1.36)

This follows immediately from α1 + α2 + α3 = π, α = β, and L(0) = 0.
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Figure 1.5: Graph of Milnor’s Lobachevsky function, y = L(x).

Proposition 1.3.14 (first derivative). The functions f g, g ∈ {euc, hyp, sph}, are continuously differen-
tiable and

∂ f g

∂λi
= βi. (1.37)

Proof. Note that the angles α, β are continuous functions of λ on R3. Hence f g defined by (1.34)
is also continuous. We will show that f g is continuously differentiable with derivative (1.37)
on an open dense subset of the domain, namely, the union of (a) the feasible region and (b) the
interior of its complement. Since f g is continuous and df g extends continuously toR3, the claim
follows.

(a) First, suppose λ is contained in the feasible region of f g. By symmetry, it suffices to consider
the derivative with respect to λ1. From (1.34) and (1.35) one obtains

∂ f g

∂λ1
= β1 +

3
i=1



λi − log(2 sin βi)

 ∂βi

∂λ1
+ (1.38)

− log(2 sinαi) + 1
2 log

2 sin(π−α1−α2−α3
2 )

 ∂αi

∂λ1
.

For hyperbolic and spherical triangles, one derives from the respective cosine rules

sinh2 ℓi
2
=

sin βi sin π−α1−α2−α3
2

sinα2 sinα3
(hyperbolic),

sin2 ℓi
2
=

sin βi sin α1+α2+α3−π
2

sinα2 sinα3
(spherical).

In both cases, expand the fraction on the right hand side by four and take logarithms to find

λi = log(2 sin βi) + log
2 sin π−α1−α2−α3

2

 − log(2 sinα j) − log(2 sinαk).

Substitute this expression for λi in (1.38) and use dβi =
1
2 (dαi − dα j − dαk) to see that all terms on

the right hand side of (1.38) cancel, except β1.
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For euclidean triangles, (1.38) simplifies to

∂ f g

∂λ1
= β1 +

3
i=1


λi − 2 log(2 sinαi)

 ∂αi

∂λ1
,

where
λi − 2 log(2 sinαi) = 2 log

ℓi
2 sinαi

= 2 log R

does not depend on i. (R denotes the circumradius.) Equation (1.37) follows because the angle
sum is constant.

(b) Now suppose λ is contained in the interior of the complement of the feasible region of f g.
Since β1, β2, β3 are constant on each connected component of the complement of the feasible
region, and since

f g(λ1, λ2, λ3) = β1λ1 + β2λ2 + β3λ3,

outside the feasible region, equation 1.37 holds also in this case. This completes the proof. □

Proposition 1.3.15 (second derivative). For g ∈ {euc, hyp, sph} the function f g is twice continuously
differentiable on its feasible set and the second derivative is

D2 f euc =
1
2

3
i=1

cotαi (dλ j − dλk)2, (1.39)

D2 f hyp =
1
2

3
i=1

cot βi


(dλ j − dλk)2 + tanh2


ℓi
2


dλ2

i


, (1.40)

D2 f sph =
1
2

3
i=1

cot βi


(dλ j − dλk)2

− tan2

ℓi
2


dλ2

i


. (1.41)

On each component of the complement of its feasible set, the function fg is linear so the second derivative
vanishes.

A proof of (1.39) is contained in the work of Bobenko et al. [13, Proposition 4.2.3], see Re-
mark 1.3.17 below. Equations (1.40) and (1.41) can be derived by lengthy calculations.

Proposition 1.3.16. (i) The function f euc is convex. On its feasible set, the second derivative D2 f euc is
positive semidefinite with one-dimensional kernel spanned by the “scaling direction” (1, 1, 1).

(ii) The function f hyp is convex. On its feasible set, the second derivative D2 f hyp is positive definite, so
the function is locally strictly convex.

Part (i) is proved by Bobenko et al. [13, Propositions 4.2.4, 4.2.5, note the following remark]
directly from (1.39). We do not know a similarly straightforward proof of part (ii). The proof by
Bobenko et al. (Section 6.2) is based on a connection with 3-dimensional hyperbolic geometry:
f hyp is the Legendre dual of the volume of an ideal hyperbolic prism considered as a function
of the dihedral angles. This volume function is strictly concave, as shown by Leibon [43]. His
argument uses the decomposition of an ideal prism into three ideal tetrahedra.

Remark 1.3.17. The functions f and V̂h defined by Bobenko et al. [13, Equations (4-3), (6-4)] are related
to the functions f euc and f hyp by

f euc(λ1, λ2, λ3) = 2 f (λ1
2 ,
λ2
2 ,
λ3
2 ), (1.42)

f hyp(λ1, λ2, λ3) = 2V̂h(λ1, λ2, λ3, 0, 0, 0). (1.43)
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data/planar_circles/circular_schramm02.xml

data/planar_circles/circular_non_schramm02.xml

Figure 1.6: Mapping a rectangle to a parallelogram. Note the orthogonal circle pattern in the
top row and the wiggly vertical lines in the bottom row.

1.4 Conformal maps of cyclic quadrangulations

Having introduced the mapping problems and variational principles, we return to conformal
maps of cyclic quadrangulations. Some basic facts were already discussed in Section 1.2.8. Here,
in Section 1.4.1, we consider a simple experiment that demonstrates the somewhat unexpected
appearance of orthogonal circle patterns, and also a necessary condition for the boundary
angles. In Section 1.4.2, we discuss a discrete version of the Riemann mapping problem for
quadrangulations.

1.4.1 Emerging circle patterns and a necessary condition

Consider the two discrete conformal maps shown in the two rows of Figure 1.6. The domains
(shown left) are a square and a rectangle, subdivided into 6×6 and 6×5 squares, respectively. We
solve the mapping Problem 1.3.1 by minimizing Eeuc as explained in Section 1.3.3, prescribing
boundary angles to obtain maps to parallelograms: Θ = 50◦ and 130◦ for the corner vertices,
Θ = 180◦ for the other boundary vertices, and Θ = 360◦ for interior vertices. The resulting
quadrangulations are shown in the middle.

On first sight, the 6×6 example shown in the top row behaves rather like one would expect from
a conformal map. The horizontal and vertical “coordinate lines” of the domain are mapped to
polygonal curves that look more or less like they could be discretizations of reasonable smooth
curves. In the 6 × 5 example shown in the bottom row, the images of the vertical lines zigzag
noticeably.

A closer look at the 6× 6 example reveals a remarkable phenomenon. Let us bicolor the vertices
black and white so that neighboring vertices have different colors, with the corners colored
white. Then, in the image quadrangulation, the edges incident with a black vertex meet at right
angles, and the edges incident with a white vertex have the same length. One can therefore
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draw a circle around each white vertex through the neighboring black vertices as shown in
Figure 1.6 (top right). At the black vertices, these circles touch and intersect orthogonally. Such
circle patterns were studied by Schramm [61] as discrete analogs of conformal maps.

Given such a circle pattern with orthogonally intersecting circles, the quadrangulation formed
by drawing edges between circle centers and intersection points consists of quadrilaterals that
are right-angled kites. Such kites have complex cross-ratio −1. Hence, the quadrangulation
coming from an orthogonal circle pattern is discretely conformally equivalent (in our sense) to
a combinatorially equivalent quadrangulation consisting of squares.

The conformal map shown in the top row of Figure 1.6 “finds” the orthogonal circle pattern
because that circle pattern exists and the conformal map is unique (by Theorem 1.3.9). For the
6 × 5 example shown in the bottom row, a corresponding orthogonal circle pattern does not
exist. No matter which coloring is chosen, there are two black vertices at which the total angle
changes (from 90◦ to 50◦ and 130◦, respectively). The neighbors of a vertex do not lie on a circle.
Figure 1.6 (bottom right) shows two circles drawn through three out of four neighbors.

If we map an m×n square grid to a parallelogram like in Figure 1.6, an orthogonal circle pattern
will appear if m an n are even. No such pattern will appear if one of the numbers is even and
the other is odd. What happens if both m and n are odd? In this case, the conformal map does
not exist. The corners with increasing angle and the corners with decreasing angle would have
different colors. This violates the necessary condition expressed in the following theorem.

Theorem 1.4.1 (Necessary condition for the existence of a conformal map). Let Σ be an abstract
quadrangulation of the closed disk, and let

z, z̃ : VΣ → C

determine two discretely conformally equivalent immersions of Σ into the complex plane. Denote their
angle sums at boundary vertices v ∈ VΣ byΘv and Θ̃v, respectively. Since the 1-skeleton of Σ is bipartite,
we may assume the vertices are colored black and white. Let V∂b and V∂w denote the sets of black and white
boundary vertices of Σ. Then 

v∈V∂b

(Θ̃v −Θv) ≡ 0 (mod 2π), (1.44)


v∈V∂w

(Θ̃v −Θv) ≡ 0 (mod 2π). (1.45)

(Since


V∂b∪V∂w (Θ̃v −Θv) = 0, equations (1.45) and (1.44) are equivalent.)

Proof. Since z and z̃ are two solutions of the cross-ratio system on Σ with the same cross-ratios
(see Section 1.2.8), there exists by Proposition 1.2.13 a function w : VΣ → C such that (1.16) holds
for all edges ij ∈ EΣ. Now suppose v0, . . . , v2n−1 ∈ VΣ are the boundary vertices in cyclic order
(with indices taken modulo 2n). Then

ei(Θ̃vk−Θvk ) =
(z̃vk+1 − z̃vk )(zvk−1 − zvk )
(z̃vk−1 − z̃vk )(zvk+1 − zvk )

=
wvk+1

wvk−1

,

so
n−1
k=0

ei(Θ̃v2k−Θv2k ) =

n−1
k=0

ei(Θ̃v2k+1−Θv2k+1 ) = 1.

Equations (1.44) and (1.45) follow. □
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1.4.2 Riemann maps with cyclic quadrilaterals

Consider the following discrete version of the Riemann mapping problem: Map a cyclic poly-
hedral surface that is topologically a closed disk discretely conformally to a planar polygonal
region with boundary vertices on a circle. An example is shown in Figure 1.7, top row. This
type of problem can often be reduced to Problem 1.3.2. Then, by the variational principle, if
a solution exists, it can be found by minimizing a convex function. For triangulations, the
reduction of the discrete Riemann mapping problem to Problem 1.3.2 is explained by Bobenko
et al. [13, Section 3.3]. Here, we consider the case of quadrangulations. (The arguments can be
extended to even polygons with more than four sides. We restrict our attention to quadrilaterals
because the combinatorial restrictions discussed in the following paragraph become even more
involved yet not more interesting for surfaces with hexagons, octagons, etc.)

The basic idea is the same as for triangulations: First, map the polyhedral surface to the half
plane with one boundary vertex at infinity. Then apply a Möbius transformation. This leads to
a combinatorial restriction: No face may have more than one edge on the boundary. (The face
would degenerate when the boundary is mapped to a straight line.) For triangulations, this
means that no triangle may be connected to the surface by only one edge. If this condition is vi-
olated, cutting off such “ears” often leads to an admissible triangulation. For quadrangulations,
this fix does not work in typical situations. Instead, if a quadrilateral contains two consecutive
edges on the boundary, cut off a triangle. The resulting polyhedral surface will consist mostly
of quadrilaterals with some triangles on the boundary, as in the example shown in Figure 1.7.

Suppose (Σ, ℓ)euc is a euclidean cyclic polyhedral surface that is homeomorphic to the closed
disk and consists mostly of quadrilaterals. (For the following construction we really only need
a boundary vertex that is incident with quadrilateral faces.) To map it to a polygonal region
inscribed in a circle, proceed as follows (see Figure 1.7):

(1) Choose a vertex k on the boundary of Σ such that all incident faces are quadrilaterals.
(2) Apply a discrete conformal change of metric (1.3) such that all edges incident with k have

the same length. One may choose u = 0 for all vertices except the neighbors of k. It does not
matter if polygon inequalities are violated after this step.

(3) Let (Σ′, ℓ′)euc be the cyclic polyhedral complex obtained by removing vertex k and all incident
quadrilaterals.

(4) Solve Problem 1.3.2 for (Σ′, ℓ′)euc with prescribed total angles Θi = 2π for interior vertices
of Σ′, Θi = π for boundary vertices of Σ′ that were not neighbors of k in Σ, and fixed
logarithmic scale factors ui = 0 for those that were neighbors of k. The result is a planar
polyhedral surface as shown in Figure 1.7, bottom. The boundary consists of one straight
line segment containing all boundary edges of Σ′ that were also boundary edges of Σ, and
two or more straight line segments, each consisting of two edges that were incident with a
removed quadrilateral.

(5) Apply a Möbius transformation (e.g., z →→ 1/z) to the vertices that maps the boundary
vertices of Σ to a circle and the other vertices to the inside of this circle. Reinsert k at the
image point of ∞ under this Möbius transformation. Each face ijmk ∈ Σ incident with k is
cyclic because the three vertices i, j, and m are contained in a line before transformation.

(6) Optionally apply a 2-dimensional version of the Möbius normalization described in Sec-
tion 1.6.3.

Proposition 1.4.2. The result of this procedure is a planar cyclic polyhedral surface that is discretely
conformally equivalent to (Σ, ℓ)euc and has its boundary polygon inscribed in a circle.
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data/planar_circles/riemann_shape.xml

Figure 1.7: Riemann mapping with cyclic quadrilaterals. Corners with valence two in the
original domain are modeled as triangles, upper left. We first map to the upper half-plane.
Quadrilaterals adjacent to the point at infinity are removed. Points opposite to the point at
infinity have a prescribed boundary angle of π. The four vertices in between have a fixed u = 0.
Quadrilaterals adjacent to the point at infinity are cyclic after the Möbius transformation to the
disk, bottom.
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data/planar_circles/riemann_shape.xml

Figure 1.8: Here we show the face circumcircles of the solution to the Riemann mapping problem
of Figure 1.7. It looks conspicuously like an orthogonal circle pattern. But the face circumcircles
intersect only approximately but not exactly at right angles.

Proof. That the boundary polygon is inscribed in a circle is obvious from the construction.
Using the Möbius invariance of discrete conformal equivalence (Proposition 1.2.5), it is not
difficult to see that the surfaces without quadrilaterals incident with k are discretely conformally
equivalent. To show that the whole surfaces are equivalent, it suffices to show that corresponding
quadrilaterals incident with k have the same complex cross-ratio.

After step (2), the length cross-ratio of a quadrilateral incident with k is equal to the simple
length ratio of the two edges that are not incident with k.

After step (4), the length cross-ratio of these edges is unchanged due to the fixed logarithmic
scale factors u = 0 on the neighbors of k. Also, these edges are now collinear because of the
prescribed angle Θ = π between them.

After applying the Möbius transformation in step (5), the image of the point at infinity and the
other three vertices of our quadrilateral incident with k form again a cyclic quadrilateral with
the same complex cross-ratio as in the beginning. □

1.5 Multiply connected domains

1.5.1 Circle domains

Koebe’s generalization of the Riemann mapping theorem says that multiply connected domains
are conformally equivalent to domains bounded by circles, and the uniformizing map to such a
circle domain is unique up to Möbius transformations. A method to construct discrete Riemann
maps is described by Bobenko et al. [13, Section 3.3] for triangulations and for mostly quadrilat-
eral meshes in the previous Section 1.4.2. Having generalized the notion of discrete conformal
equivalence from triangulations to cyclic polyhedral surfaces, it is straightforward to adapt this
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data/circle_domain_euclidean/three_holes.xml

Figure 1.9: Discrete conformal map of a multiply-connected domain (left) to a circle domain
(middle). The images of vertical and horizontal “parameter lines” are shown on the right.

method to construct discrete maps to circle domains:

(1) Fill holes by gluing faces to all but one boundary component, so that the resulting surface is
homeomorphic to a disk.

(2) Construct the discrete Riemann map.
(3) Remove the faces that were added in step (1).

Figure 1.9 shows an example.

1.5.2 Special slit domains

Any multiply connected domain can be mapped to the complex plain with parallel slits [49]. In
principle, it is possible to construct discrete conformal maps that map holes to slits by solving
Problem 1.3.1. On each boundary component that should be mapped to a slit, set the desired
total angle Θ = 2π for the two vertices that should be mapped to the endpoints of the slit, and
set Θ = π for all other vertices on that boundary component. However, this will not work in
general. While the resulting surface will be flat, the developing map to the plane will in general
have translational monodromy for a cycle around the hole. The surface will only close up in the
plane if the vertices that should be mapped to the endpoints of the slit are chosen exactly right.
(This will in general require modifying the original mesh.)

Sometimes, the symmetry of the problem determines the right positions of the end-vertices, so
that discrete conformal maps to slit surfaces can be computed. The first two rows of Figure 1.10
show examples. The bottom row visualizes a discrete conformal map where circular holes are
mapped to slits. Here, we use the following trick: We start with the slit surface and map it to a
surface with circular holes as described in Section 1.5.1.

1.6 Uniformization of spheres

This section is concerned with discrete conformal maps of polyhedral surfaces of genus 0 onto
the round sphere. For triangulations, this is described by Bobenko et al. [13, Section 3.2]. In
Section 1.6.1, we adapt this method to quadrangulations. This is similar to the discrete Riemann
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data/planar_streams/arrow_cylinder_planar.xml

data/planar_streams/triangle_cylinder_planar.xml

data/planar_streams/circular_stream_03.xml

Figure 1.10: Mapping surfaces with holes to slit surfaces. In all images, the left and right parts of
the boundary are identified by a horizontal translation. Preimages of horizontal lines visualize
the flow of an incompressible inviscid fluid around the hole in a channel with periodic boundary
conditions. Top row: A cylinder with a triangular hole is mapped to a cylinder with a slit. One
vertex of the triangle and the midpoint of the opposite side are mapped to the endpoints of the
slit. Middle row: An arrow shaped slit is mapped to a straight slit. The two vertices at the
arrow’s tip, on either side of the slit, are mapped to the endpoints of the straight slit. Bottom
row: Three circular boundary components are mapped to horizontal slits. (The slit surface is
not shown.)
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data/spherical_cyclic/spherical_circular.xml

Figure 1.11: Discrete conformal map from the cube to the sphere, calculated with the method
described in Section 1.6.1. We apply Möbius normalization (Section 1.6.3) to the polyhedral
surface with vertices on the sphere to achieve rotational symmetry.

mapping with quadrilaterals described in Section 1.4.2. Effectively, this method reduces the
problem to minimizing the convex euclidean functional Eeuc. The spherical version of the
variational principle (Theorem 1.3.7) involves the non-convex function Esph. It is not as practical
for calculations, because one has to find a saddle point instead of a minimum. Nevertheless,
the spherical functional can often be used to calculate maps to the sphere. This is explained in
Section 1.6.2.

1.6.1 Uniformizing quadrangulations of the sphere

Suppose (Σ, ℓ)euc is a cyclic polyhedral surface with quadrilateral faces that is homeomorphic to
the sphere.

(1) Choose a vertex k ∈ VΣ.
(2) Apply a discrete conformal change of metric (1.3) such that all edges incident with k have

the same length. One may choose u = 0 for all vertices except the neighbors of k. It does not
matter if polygon inequalities are violated after this step.

(3) Let (Σ′, ℓ′)euc be the complex obtained by removing vertex k and all incident quadrilaterals.
(4) Solve Problem 1.3.2 for (Σ′, ℓ′)euc with prescribed total angles Θi = 2π for interior vertices

of Σ′, Θi = π for boundary vertices of Σ′ that were not neighbors of k in Σ, and fixed scale
factors ui = 0 for vertices that were neighbors of k in Σ. The result is a planar polyhedral
surface with cyclic quadrilaterals. Consecutive boundary edges that belonged to a face
incident with vertex k in Σ are contained in a straight line.

(5) Map the vertices to the unit sphere by stereographic projection and reinsert the vertex k at
the image point of∞.

(6) Optionally apply Möbius normalization, see Section 1.6.3.

Proposition 1.6.1. The result is a cyclic polyhedral surface with vertices on the unit sphere that is
discretely conformally equivalent to (Σ, ℓ)euc.
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data/spherical/cube_data.xml data/spherical/tetrahedron_data.xml

Figure 1.12: Mapping conformally to the sphere using the spherical functional. The spherical
surfaces are Möbius-normalized to achieve rotational symmetry.

This can be seen in the same way as the corresponding statement about discrete Riemann maps
with quadrilaterals (Proposition 1.4.2). Figure 1.11 shows a discrete conformal map calculated
by this method.

1.6.2 Using the spherical functional

It is possible to use the spherical functional Esph to calculate maps to the sphere even though it
is not convex. For simplicity, we consider only triangulations, so all λ variables are fixed and
we may consider Esph as function of the logarithmic scale factors u only (see Section 1.3.3). A
numerical method has to find a saddle point of Esph(u).

Note that the scaling direction 1V∆ ∈ R
V∆ is a negative direction of the Hessian at a critical point:

Suppose (∆, ℓ)sph is a spherical triangulation with the desired angle sum Θi at each vertex i.
Then 0 ∈ RV∆ is a critical point of Esph

∆,Θ(u). If we enlarge all edge lengths by a common factor
eh > 1, then all angles become larger, so every component (1.30) of the gradient of Esph becomes
negative. Following the negative gradient would result in even longer lengths.

The following minimax method works in many cases. Define the function Ẽ by maximizing the
functional Esph in the scaling direction,

Ẽ(u) = max
h∈R


Esph(u + h1V∆ )


(1.46)

Minimize functional Ẽ in a hyperplane of RV∆ transverse to the direction 1V∆ .

Figure 1.1 (top) and Figure 1.12 show examples of discrete conformal maps to polyhedral
surfaces inscribed in a sphere that were calculated using this method.

1.6.3 Möbius normalization

The notion of discrete conformal equivalence of euclidean polyhedral surfaces (Σ, ℓ)euc in R3

is Möbius-invariant (Proposition 1.2.5). If all vertices v ∈ VΣ are contained in the unit sphere
S2
⊂ R3, then there is a Möbius transformation T of S2 such that the center of mass of the

transformed vertices is the origin [70], 
v∈VΣ

T(v) = 0.
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The Möbius transformation T is uniquely determined up to post-composition with a rotation
around the origin.

The following method can be used to calculate such a Möbius transformation: Find the unique
minimizer of the function δ defined below. Then choose for T a Möbius transformation that
maps S2 to itself and the minimizer to the origin. Here, we only provide explicit formulas for
the function δ and its first two derivatives. For a more detailed account, we refer the reader to
Springborn [70]. The function δ is defined on the open unit ball in R3 by

δ(x) =

v∈V

log

−⟨x, v⟩
√
−⟨x, x⟩


, (1.47)

where
⟨x, y⟩ = x1y1 + x2y2 + x3y3 − 1. (1.48)

The gradient and Hessian matrix of δ are

grad δ(x) =

v∈V

 v
⟨x, v⟩

−
x
⟨x, x⟩


, (1.49)

Hess δ(x) =

v∈V


2

xTx
⟨x, x⟩2

−
vTv
⟨x, v⟩2

− diag
 1
⟨x, x⟩


. (1.50)

1.7 Uniformization of tori

Every Riemann surface R of genus one is conformally equivalent to a flat torus, i.e., to a quotient
space C/Γ, where Γ = Zω1 + Zω2 is some two-dimensional lattice in C. The biholomorphic
map from R to C/Γ, or from the universal cover of R to C, is called a uniformizing map. For a
polyhedral surface of genus one, constructing a discrete uniformizing map amounts to solving
Problem 1.3.1 with prescribed total angle Θ = 2π at all vertices. This provides us with a
method to calculate approximate uniformizing maps for Riemann surfaces of genus one given
in various forms. We consider examples of tori immersed in R3 in Section 1.7.1 and elliptic
curves in Section 1.7.2. (We will also consider tori in the form of Schottky uniformization in
Section 1.8.2, as a toy example after treating the higher genus case.)

The belief that discrete conformal maps approximate conformal maps is not based on a proven
theorem but on experimental evidence like the Wente torus example of Section 1.7.1 and the
numerical experiments of Section 1.7.4.

1.7.1 Immersed tori

First we consider a simple example with quadrilateral faces. Figure 1.13 (left) shows a coarse
discretization of a torus whose faces are inscribed in circles. On the right, the figure shows
the uniformization obtained by solving Problem 1.3.1 with prescribed total angle Θ = 2π at all
vertices.

To test the numerical accuracy of our discrete uniformizing maps, we consider the famous
torus of constant mean curvature discovered by Wente [74]. Explicit doubly-periodic conformal
immersion formulas (i.e., formulas for the inverse of a uniformizing map) are known in terms
of elliptic functions [1, 73, 10].
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data/torus_cyclic/torus_cyclic.xml

Figure 1.13: Uniformization of an immersed torus with cyclic quadrilateral faces.

data/wente_embedding/wente_1240.xml

Figure 1.14: Uniformization of the Wente torus. Discretely sampled conformal immersion (left),
domain of uniformization (right). Orange curves indicate the lattice of the flat torus in the
domain. The faces of the polyhedral surface are approximately conformal squares. In the
discrete uniformization their images are approximately squares, as it should be.
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data/elliptic_curves/{tetrahedron|square|generic}.xml

Figure 1.15: Discrete uniformization of elliptic curves. Left: If the branch points in S2 are the
vertices of a regular tetrahedron, period lattice is very close to a hexagonal lattice. Middle: If
the branch points form a square on the equator, the period lattice is very close to a square lattice.
Right: an example with branch points in unsymmetric position.

Figure 1.14 (left) shows a triangulated model of the Wente torus constructed by sampling an
explicit immersion formula [10] on a nearly square lattice containing the period lattice Γ. On
the right, the figure shows the discrete uniformization, which reproduces the regular lattice Γ to
high accuracy. The modulus τ = ω2/ω1 of the Wente torus has been determined numerically [30]
as τ = 0.41300 . . . + i 0.91073 . . . . The modulus of the discrete uniformization of the discretized
surface shown in the figure is τ̃ = 0.41341 . . . + i 0.91061 . . . .

1.7.2 Elliptic curves

An algebraic curve of the form

µ2 = a
k

j=1

(λ − λ j), (1.51)

where the λ j ∈ C are distinct and k = 3 (an elliptic curve) or k = 4 (with the singularity at
infinity resolved), represents a Riemann surface of genus one as branched double cover of the
λ-sphere CP1, which we identify conformally with the unit sphere S2

⊂ R3. The branch points
are λ1, λ2, λ3,∞ if k = 3 and λ1, λ2, λ3, λ4 if k = 4. Every Riemann surface of genus one can be
represented in this way.

We construct a discrete model for a double cover of S2 branched at four points λ1, . . . , λ4 in the
following way. Choose n other points p1, . . . , pn ∈ S2 and let P be the boundary of the convex hull
of the points {λ1, . . . , λ4, p1, . . . , pn}. Then P is a convex polyhedron with n + 4 vertices and with
faces inscribed in circles. (Generically, the faces will be triangles. In Section 1.7.3 we explain the
method we used to obtain “good” triangles.) Find two disjoint simple edge paths γ1, γ2 joining
the branch points λ j in pairs. Take a second copy P̂ of the polyhedron P. Cut and glue P and
P̂ along the paths γ1, γ2 to obtain a polyhedral surface of genus 1. Uniformize it by solving
Problem 1.3.1. One obtains a discrete conformal map to a flat torus, whose inverse can be seen
as a discrete elliptic function. Figure 1.15 shows examples. We will treat hyperelliptic curves in
a similar fashion in Section 1.8.3.

Remark 1.7.1. Instead of constructing a doubly-covered convex euclidean polyhedron with vertices on
the unit sphere as described above, one could also construct a spherical triangulation of the doubly-covered
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data/elliptic_tetrahedron_uniform/tetrahedron_uniform_branched.xml

Figure 1.16: Mapping the hexagonal torus C/(Z + τZ), τ = 1
2 + i

√
3

2 (left) to a double cover of
the sphere (right). Because the regular triangulation of the torus on the left is symmetric with
respect to the elliptic involution, its image projects to a triangulation of the sphere seen on the
right.

data/elliptic_square_uniform/square_branched.xml

Figure 1.17: Mapping the square torus C/(Z + iZ) (left) to a double cover of the sphere (right).
Again, the triangulation on the left is symmetric with respect to the elliptic involution, so the
image on the right projects to a triangulation of the sphere.

sphere that is invariant under the elliptic involution (exchanging sheets). These two approaches are in
fact equivalent due to Remark 1.2.3.

Mapping a flat torus to an elliptic curve. We can also go the opposite way, mapping a flat
torus to a double cover of S2. Start with a triangulated flat torus. The triangulation should
be symmetric with respect to the elliptic involution, i.e., symmetric with respect to a half turn
around one vertex (which is then also a half turn around three other vertices). The quotient space
of the triangulated torus modulo the elliptic involution is then a triangulated sphere. Map it to
the sphere by the procedure explained by Bobenko et al. [13, Section 3.2], see also Section 1.6.1
of the present work.

Figures 1.16 and 1.17 show examples where we started with a hexagonal and a square torus
respectively.
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1.7.3 Choosing points on the sphere

The uniformization procedure for elliptic curves described in Section 1.7.2 requires choosing
points on the sphere in addition to the four given branch points. For numerical reasons, these
points should be chosen so that taking the convex hull leads to triangles that are close to
equilateral. We obtained good triangulations by minimizing the following energy for n points
in R3 while fixing the subset of branch points:

E = n2

v∈V

(⟨v, v⟩ − 1)2 +


v,w∈V
w,v

1
⟨w − v,w − v⟩

, (1.52)

∂E
∂v

= 4n2
⟨v, v⟩ v + 4


w∈V
w,v

w − v
⟨w − v,w − v⟩2

(1.53)

where ⟨., .⟩ denotes the standard euclidean scalar product ofR3. We do not enforce the constraint
that the points should lie in the unit sphere S2. Instead, we simply project back to S2 after the
optimization.

As initial guess we choose points uniformly distributed in S2. To achieve this we choose points
with normally distributed coordinates and project them to S2 [48].

1.7.4 Numerical experiments

Given the branch points of an elliptic curve, the modulus τ can be calculated in terms of
hypergeometric functions. In this section, we compare the theoretical value of τ with the value
τ̂ that we obtain by the discrete uniformization method explained in Section 1.7.2.

We consider elliptic curves in Weierstrass normal form

µ2 = 4(z − λ1)(z − λ2)(z − λ3)

= 4z3
− g2z − g3,

(1.54)

so the branch points λ1, λ2, λ3,∞ satisfy λ1 + λ2 + λ3 = 0, and

g2 = −4(λ1λ2 + λ2λ3 + λ3λ1), g3 = 4λ1λ2λ3. (1.55)

We calculate the modulus τ with Mathematica using the built-in function WeierstrassHalf-
Periods[{g2, g3}]. We normalize τ and the value τ̂ obtained by discrete uniformization so that
they lie in the standard fundamental domain of the modular group, |τ| > 1 and |Re(τ)| < 1

2 , and
we consider the error |τ − τ̂|. (We stay away from the boundary of the fundamental domain.)

Subdivided icosahedron.

In this experiment we start with the twelve vertices of a regular icosahedron and choose the
branch points λ1, . . . , λ4 among them. The remaining points act the role of p1, . . . , pn. To study
the dependence of |τ− τ̂| on the number of points we repeatedly subdivide all triangles into four
similar triangles and project the new vertices to S2. The number of vertices grows exponentially
while the triangles remain close to equilateral. Figure 1.18 shows the result of this experiment.
It suggests the error behaves like

|τ − τ̂| = O(nα), α ≈ −0.88. (1.56)
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data/convergence/subdivision/icosubdivision01.dat

data/convergence/subdivision/data/icosubdivision01.xml

Figure 1.18: Left: Error for zero to six subdivision steps. The log-log plot shows the error
|τ − τ̂| against the number of vertices of the subdivided icosahedron (i.e., in one sheet of the
doubly-covered sphere). To estimate the asymptotic behavior of the error, we determine the
slope α ≈ −0.88 of a line through the last four points by linear regression. Right: Result of the
discrete uniformization after two subdivision steps.

Dependence on mesh quality.

In the second experiment we choose the additional points randomly to analyze how the quality
of the triangulation affects the approximation error. We use the following quantities to measure
the quality of the triangulation based on length cross-ratios for edges:

Qlcr(e) :=
1
2


lcr(e) +

1
lcr(e)


− 1,

Qlmr( f ) :=
1
2


lmr( f ) +

1
lmr( f )


− 1,

where lcr denotes the length cross-ratio (1.9) of an edge, and lmr denotes the length multi-ratio
defined for faces by lmr( f ) =


e∈ f lcr(e). If Qlcr = 0 for all edges, then the mesh is discretely

conformally equivalent to a mesh consisting of equilateral triangles. So less is better for these
quality measures. To get enough “good” triangulations in our samples, we improve random
meshes with the procedure described in Section 1.7.3.

Figure 1.19 (left) shows a plot of 2600 triangulations ranging from n = 20 to n = 1500 vertices.
No clear convergence rate is discernible. The situation improves when only samples with a
certain minimal mesh quality are considered. For the plot in Figure 1.19 (right) we selected
only triangulations with maxe{Qlmr(e)} < 0.3. (The results are similar when using the quality
measures maxe{Qlcr(e)} < x or meane{Qlcr(e)} < x.)

The results from these two experiments suggest that the error depends on the number of vertices
asymptotically like nα, where the exponent α < 0 depends on the mesh.

1.7.5 Putting a square pattern on a spherical mesh

We can use a variant of the discrete uniformization of elliptic curves (Section 1.7.2) to put a
square pattern on a surface that is homeomorphic to a sphere. Figure 1.20 shows an example.
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Figure 1.19: Left: log-log plot of the error |τ − τ̂| against the number of vertices for a sample of
optimized random triangulations with no quality constraint. Right: Only triangulations with
maxe{Qlmr(e)} < 0.3 are considered. The regression line with slope α ≈ −0.63 is shown in red.

data/bear_torus/bear60.xml

Figure 1.20: The discrete “Berlin Buddy Bear”, a mascot of the SFB/Transregio 109 “Discretiza-
tion in Geometry and Dynamics”. The square pattern is put on a bear model as described in
Section 1.7.5. Four ramification vertices (marked in red) are chosen at the paws. The uniformiza-
tion of the branched double cover is shown in the middle. Each fundamental domain covers
the bear twice. Fundamental domains of the group generated by rotations around the branch
points are shown on the right. Each covers the bear once.
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data/genus3/data.xml

Figure 1.21: Discrete uniformization of an embedded triangulated surface of genus 3. A funda-
mental polygon with “canonical” edge pairing is shown on the right together with the image
mesh. The edges of the polygon (brown) and the axes of the edge-pairing translations (blue) are
pulled back to the embedded surface shown on the left.

Pick four vertices of the mesh as ramification points and create a two-sheeted branched cover
of the mesh by gluing two copies along paths connecting the selected vertices. The resulting
surface is a torus. It can be uniformized using the euclidean functional. The uniformizing
group is generated by two translations. This group is a subgroup of the group generated by
rotations around the branch vertices. Hence we can achieve the same result as follows. Instead
of doubling the surface, prescribe total angles Θ = π at the ramification vertices and Θ = 2π
at all other vertices. The result is a flat surface with four cone-like singularities of cone-angle
π. The monodromy of the developing map is generated by half-turns. Avoiding the double
cover is more efficient because one only has to minimize a function of (approximately) half the
number of variables.

1.8 Uniformization of surfaces of higher genus

As in the case of tori (Section 1.7), we can find uniformizing maps for cyclic polyhedral surfaces
of genus g ≥ 2 by solving the hyperbolic version (g̃ = hyp) of Problem 1.3.1 with prescribed
total angle Θ = 2π at all vertices. (We will only consider triangulations in the following.) This
allows us to calculate approximate uniformizations for Riemann surfaces of genus g ≥ 2 given
in various forms, by approximating them with polyhedral surfaces.

In Section 1.8.1, we briefly discuss how to construct fundamental polygons and group generators.

Not much needs to be said about the uniformization of immersed surfaces. Examples are
shown in Figures 1.1 (bottom) and 1.21. In Section 1.5.1 we discussed mappings from multi-
ply connected domains to circle domains. Analogously, one can construct uniformizations of
polyhedral surfaces of genus g ≥ 2 with holes over the hyperbolic plane with circular holes. An
example is shown in Figure 1.22. More precisely, the holes are bounded by hyperbolic polygons
with vertices on a circle.

We explain how to calculate the Fuchsian uniformization for Riemann surfaces given in the form
of a Schottky uniformization in Section 1.8.2. We discuss the uniformization of hyperelliptic
curves in Section 1.8.3 and a geometric characterization of hyperelliptic Riemann surfaces in
Section 1.8.4.
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data/circle_domain_hyperbolic/brezel_{one,two,three}_holes.xml

Figure 1.22: Uniformization of a genus-2 surface with three boundary components over the
hyperbolic plane with three circular holes. The three holes are filled with polygons, which are
then triangulated during the calculation, see Sections 1.5.1 and 1.3.

1.8.1 Fundamental polygons and group generators

Basic facts and notation. Every compact Riemann R of genus g ≥ 2 can be represented as
the quotient of the hyperbolic plane H2 modulo the action of a discrete group G of hyperbolic
translations,

R = H2/G. (1.57)

Presentations of the group G play an important role. We will denote generators by capital letters
and their inverses by primes,

A′ := A−1
∈ G. (1.58)

The uniformization group G can be presented with a finite set of generators

A,B,C,D, . . . ∈ Isom(H2)

subject to a single relation r = 1,

G = ⟨A,B,C,D, . . . | r = 1⟩ , (1.59)

where r is a product in which all generators and their inverses appear exactly once. Such
presentations are closely related with fundamental polygons: Every fundamental polygon in
which all vertices are identified leads to such a presentation.

A fundamental domain of G is an open connected subset D of the hyperbolic plane such that
the G-orbit of the closure D̄ covers H2, and gD ∩ D = ∅ for all g ∈ G \ {1}. A fundamental
polygon of G is a fundamental domain with polygonal boundary, i.e., the boundary consists
of geodesic segments, the edges of the fundamental polygon, which are identified in pairs by
the action of the group G. For each edge a, there is exactly one partner edge a′ such that there
exists a translation A ∈ G mapping a to a′. These edge-gluing translations form a generating
set of G. If all vertices of the fundamental polygon are identified (i.e., they belong to the same
G-orbit), then the fundamental polygon has 4g edges. In this case there is only one relation for
these generators. The relation can be determined from the edge labels, which we always list in
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counterclockwise order. For example, if the edges of an octagon are labeled “canonically”,

aba′b′cdc′d′, (1.60)

then the relation for the corresponding edge pairing translations is

DC′D′CBA′B′A, (1.61)

and if opposite edges are identified,
abcda′b′c′d′, (1.62)

the relation is
DC′BA′D′CB′A = 1. (1.63)

Computational aspects.

Let (Σ, ℓ) be a closed (euclidean, spherical, or hyperbolic) triangulated surface of genus g ≥ 2.
We solve Problem 1.3.1 to obtain a combinatorially equivalent hyperbolic triangulated surface
(Σ, ℓ̃)hyp with angle sumΘ = 2π at every vertex. We lay out the triangles in the hyperbolic plane
one-by-one, following a breadth-first search of the the 1-skeleton of the dual cell complex of Σ.
(Alternatively, one could use a shortest spanning tree of the 1-skeleton of the dual complex [23].)
The result is a fundamental polygon with many vertices. An example is shown in Figure 1.23
(a).

We simplify this fundamental polygon by connecting vertices that are identified with more than
one partner by geodesic arcs, as shown in Figure 1.23 (b). The resulting polygon has in general
more than one vertex class.

Now we perform the standard algorithm involving cut-and-glue operations (see, e.g., [33]) to
obtain a fundamental polygon with one vertex class and so-called canonical edge identification

aba′b′cdc′d′ . . . . (1.64)

During this process we maintain edge-identification transformations, which we represent as
SO+(2, 1) matrices.

Hyperbolic translations tend to accumulate numerical errors quite fast when building products.
The situation could be ameliorated somewhat by using the PSL(2,R)-representation of hyper-
bolic isometries [25], but the fundamental problem remains. For this reason, it is desirable to
perform the cut-and-glue algorithm in such a way that the number of matrix products required
to maintain the gluing translations is small.

We start with a fundamental polygon with a single vertex class that is not in canonical form.
Then choose sides a and b such that the order in the polygon is a · · · b · · · a′ · · · b′ · · · . We perform
a cut-and-paste operation such that sides a and b are next to each other after transformation, see
Figure 1.24. In order to minimize the number of products we choose a and b such the number
of sides in between a, b, a′, and b′ is minimal. We proceed cutting as described before to bring b
next to a′ and analogously a′ next to b′. We end up with a new polygon and the order aba′b′ · · · .
Repeat this algorithm for the rest of the sides to arrive at canonical form. Again a proof can be
found, e.g., in the book by Jost [33]. See Figure 1.25 for an example of this algorithm.

The number of products built during the transformation of a linked pair a, b depends on the
number of polygon sides between a, b, a′, and b′. Let C be the number of sides between a and b.
Let D and E be the number of sides between b, a′, and b′ respectively. Then the total number of
products in this transformation is 6C + 4D + 2E. In step 1, connecting a and b, we can perform
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(a) (b)

(c) (d)

(e) (f)
data/algorithm/data.xml

Figure 1.23: Constructing a fundamental polygon with opposite edges identified. (a) Laying
out hyperbolic triangles creates a fundamental polygon with many vertices. (b) Straighten the
edges between vertices that are identified with more than one partner (shown in red). (c) Axes
of the edge-pairing translations are shown in blue. (d,e) Two cut-and-paste operations lead to
a fundamental polygon with one vertex class and opposite edges identified. The axes intersect
in one point (see Section 1.8.4). We move this point to the origin. (f) Tiling the hyperbolic plane
with fundamental polygons.



44 CHAPTER 1. DISCRETE UNIFORMIZATION OF RIEMANN SURFACES
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ĉi

â′a

ĉi
′ = c′i
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c1, . . . , cn

Figure 1.24: Cut-and-paste: Cut from the start of a to the start of side b. Glue the piece along a′

using transformation A that moves side a to ′a. Intermediate sides c1, . . . , cn between a and b are
transformed accordingly and group elements transform as Ĉi = CiA′. Their inverses C′i become
Ĉi
′ = AC′i
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Figure 1.25: Motions to transform a given fundamental domain into canonical form. The shaded
area is the current fundamental polygon. Step 1: Choose the linked pair a, b. Cut at c and b and
identify via B to put side a next to side b. Choose linked pair e, f . Cut between e′ and d′ and
identify via E′ to put side e′ next to f ′. The remaining handle cdc′d′ is already in place and we
arrive at canonical form aba′b′cdc′d′e f e′ f ′.
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Figure 1.26: The algorithm of Linda Keen to construct strictly convex fundamental poly-
gons. Start with any canonical fundamental polygon aba′b′cdc′d′ with a corresponding relation
DC′D′CBA′B′A = 1 (left). We choose the intersection p0 of the axes of transformations A and B
as base point for the new domain. The new vertices of the fundamental domain are calculated
as p1 = A′Bp0, p2 = A′p0, p3 = Bp0, and p4 = BA′p0. The other vertices are obtained similarly
from p4 by applying C and D.

the cut-and-past operation using transformation b and a cut between the end of a and the end
of b in counter-clockwise order. This moves the intermediate sides between a and b out of the
way for the next 2 steps. By this we have a total number of products 2C + 4D + 2E. We use
a greedy implementation that chooses the smallest number of products in each step to select a
and b. Alternatively one could enumerate the transformation tree and choose the cheapest path
of all transformation sequences.

The polygon with canonical edge identifications may not be convex. Following Linda Keen [36],
we can transform this domain into a strictly convex fundamental polygon by choosing a different
base vertex for the same group of transformations. Let aba′b′cdc′d′ . . . be a fundamental polygon
and let

G = ⟨A,B,C,D, . . . ∈ PSL(2,R) | . . .DC′D′CBA′B′A = 1⟩ (1.65)

be the corresponding presentation of the uniformization group, see Figure 1.26 (left). Then the
axes of the generators A and B intersect in a point p0. Choosing p0 as the base point of a new
fundamental polygon as shown in Figure 1.26 (right) renders it convex and uniquely determined
for the given group and presentation.

Fundamental polygons with opposite sides identified.

When we consider the geometric characterization of hyperelliptic surfaces in Section 1.8.4,
we want to transform fundamental polygons into fundamental polygons with opposite sides
identified, i.e., polygons with edge labeling

abcd · · · a′b′c′d′ · · · .

Any fundamental polygon can be transformed into a fundamental polygon with opposite
edges identified by cut-and-glue operations: First transform the polygon to canonical form
aba′b′cdc′d′ . . . by the standard algorithm. Playing a sequence of steps that transforms a polygon
with opposite edges identified to canonical form backwards, transforms the canonical polygon
to a polygon with opposite edges identified.
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Figure 1.27: Algorithm example: Start with group relation B′F′D′E′A′FEC′DCBA = 1. Step 1:
Cut from the start of d′ to the end of c′ and identify via C′ to move C′ behind D′. The resulting
relation is clustered such that the elements of the first half form the inverses of the second half:
B′F′D′C′E′A′FEDCBA = 1. We now sort elements A, . . . ,B to match the order of A′, . . . ,F′ or
vice versa. Step 2: Cut at a′ and b and identify via B to move B behind A′. We get relation
B′F′D′C′E′A′BFEDCA = 1. Step 3: Cut between d′ and e and identify via E to move E behind
C. We get B′F′D′C′E′A′BFDCEA = 1 as the final relation and a fundamental polygon with
oppositely identified sides.

This algorithm is not optimal with respect to the number of multiplications necessary to maintain
the edge-gluing translations. Especially if the original polygon is already “close” to one with
opposite sides identified, the detour via a canonical polygon is inefficient.

In all examples, we use a heuristic method based on the following idea: Find one of the longest
sequences of different letters in the edge labeling (ignoring primes), and then try to move a
different letter into this sequence by cutting and gluing.

For a given fundamental polygon and the ordering of its sides, we can reconstruct the relation
of the group by moving around the base vertex on the surface. That means if we start with
transformation A moving side a to a′, the next element in the relation belongs to the side next to
a′ in counter-clockwise order. We proceed until we get back to element A. Note that we could
have chosen clockwise orientation, but for drawing pictures we stick to counter-clockwise.

For an oppositely identified fundamental polygon (and for canonically identified polygons as
well) the order of transformations in the relation has the same structure as the sides of the
polygon (by reading the relation backwards and possibly relabeling of sides). For example the
group relation corresponding to a polygon ab′cd′a′bc′d is D′C′B′A′DCBA = 1.

For the order of group elements in the relation we give cut-and-paste sequences that move single
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b

a

a′

â′

â

Figure 1.28: Move element A in front of B in a relation that moves counter-clockwise around the
base vertex. Choose the upper cut (dashed lines) and paste via transformation A′ moving side
a′ to a. Or cut at the lower one and paste via transformation A.

elements to different locations in the relation leaving all other elements in place. Using these
transformations we normalize the polygon as follows.

(1) Find largest sequence of different (excluding inverse) generators in the relation.
(2) Move missing elements into the sequence such that it forms a basis for the group.
(3) Sort elements in the sequence to match the order of the corresponding inverse elements.

Let the order of sides in the polygon be a′ · · · b · · · a · · · . The corresponding cut-and-paste opera-
tion that moves the group element A behind element B in the relation is one of

• Cut from the end of a to the start of b and glue using A.
• Cut from the start of a′ to the start of b and glue via A′.

Choose the one with the lowest number of products, see Figure 1.28. If the order of sides in
the polygon is a′ · · · a · · · b · · · we can however not perform the operation, the resulting domain
would be disconnected. We therefor define the cost for such an operation as infinite. In step 2
we minimize over all possible transformations that move a selected element into the sequence.
We do not show here that the cost is always a finite during the algorithm and call this algorithm
heuristic due to this fact. Depending on the sort algorithm we use in step 3 we have the freedom
to choose between the motion of the inverse elements or their partners. In our examples this
gives enough freedom to create all oppositely identified fundamental domains. See Figure 1.27
for an example of this algorithm.

1.8.2 From Schottky to Fuchsian uniformization

In this section, we consider Riemann surfaces presented as quotient spaces of classical Schottky
groups.

Definition 1.8.1. Let C1,C′1 . . . ,Cg,C′g be circles in Ĉ that bound disjoint disks. A classical Schottky
group is a Kleinian group generated by Möbius transformations σ1, . . . , σg, where σ j maps the outside of
C j onto the inside of C′j.

Each generator σ j has fixed points A j, B j inside C j and C′j, respectively. The limiting set A of
G is the union of orbits of the fixed points A j, B j. G acts freely and properly discontinuously
on the domain of discontinuity Ω = Ĉ \ A. The quotient space R = Ω/G is a Riemann surface
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of genus g. The domain outside all of the circles is a fundamental domain of G. The identified
pairs of circles form handles.

We discretize the Riemann surface R = Ω/G determined by a classical Schottky group G as
follows. First, construct a triangulation of Ω whose vertex set and combinatorics are invariant
under the action of G. (Ignore the fact that a Möbius transformation maps straight edges to
circular arcs as in Proposition 1.2.5 on the Möbius invariance of conformal classes.) For example,
the triangulation may be the Delaunay triangulation of a G-invariant point set. The following
construction avoids Delaunay triangulations of infinite (but symmetric) point configurations:

If necessary, choose a Möbius normalization for which the fundamental domain is bounded in
C. For each pair of circles C j,C′j we construct polygons p1 j, . . . , pn j j inscribed in C j and p′1 j, . . . , p

′

n j j
inscribed in C′ such that σ j(pkj) = p′kj. For example, we may choose a regular n-gon inscribed
in C j and map the vertices by σ j to C′j. Triangulate the compact region bounded by these
polygons, adding vertices in the interior as wanted. (For example, use a constrained Delaunay
triangulation.) The images of this triangulation under the action of G (again, considering only
combinatorics and vertex positions) form a G-invariant triangulation ∆̂ of the universal cover
of R, hence a triangulation ∆ of R. More precisely, the triangulations ∆̂ and ∆ are only defined
up to isotopy fixing the vertices. The edge-lengths ℓ̂ (distances of vertices) do not project from
∆̂ to ∆, but the length cross-ratios lcr calculated from these edge lengths do, because they are
Möbius-invariant. The projected length cross-ratios lcr determine a discrete conformal class for
∆ (see Section 1.2.5).

To obtain a Fuchsian uniformization of R, construct edge lengths ℓ from the length cross-ratios
lcr as described in Section 1.2.6. Then solve Problem 1.3.1 (or rather the corresponding analytic
version, Problem 1.3.4) for (∆, ℓ)euc with g̃ = hyp and desired angle sums Θ = 2π at all vertices.

Note that the lengths ℓ calculated from length cross-ratios lcr may not satisfy all triangle in-
equalities. This does not matter for the corresponding analytic Problem 1.3.4 (with V = V1,
E = E1). If Problem 1.3.4 has a solution, it is in the discrete conformal class determined by the
length cross-ratios lcr. Also, whether or not Problem 1.3.4 has a solution does not depend on
the choice of edge lengths ℓ provided they lead to the same length cross-ratios.

Figure 1.29 shows examples of the Fuchsian uniformization of a genus two and three surface
presented by its Schottky uniformization.

Tori given by Schottky data. For tori, the Schottky data consists of one generator

σ(z) − A
σ(z) − B

= µ
z − A
z − B

(1.66)

and one pair of circles. To find a uniformization C/Γ is elementary. It suffices to consider the
case where A = B = 0 (and C, C′ are concentric circles around 0 with radii i and µ. Figure 1.30
shows two examples where we apply the discrete method without adding extra points inside
the fundamental domain of the Schottky group.

1.8.3 Hyperelliptic curves

A hyperelliptic curve is a complex algebraic curve of the form

µ2 = p(λ), (1.67)

where p is a polynomial of degree d ≥ 5 with d distinct roots. For d = 2g + 2 or d = 2g + 1,
the hyperelliptic curve becomes a compact Riemann surface of genus g after singularities at



1.8. UNIFORMIZATION OF SURFACES OF HIGHER GENUS 49

data/schottky_g2/genus2_fine.xml

data/schottky_g3/schottky.xml

Figure 1.29: Discrete Riemann surface of genus 2 and 3 given by Schottky data (left) and the
corresponding Fuchsian uniformizations (right). Circles with the same color are identified. The
extra points of the triangulation are chosen so that the triangles are close to equilateral where
possible. The shaded region in the right images corresponds to the fundamental domain of the
Schottky group in the left image. Its boundary consists of curves corresponding to the circles
and curves corresponding to lines connecting the circles (drawn in gray).
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data/schottky_g1/res50.xml

data/schottky_g1/res40_nonrect.xml

Figure 1.30: Left: Fundamental domains of Riemann surfaces of genus 1 given by Schottky data
C, C′, A, B, µ (see (1.66)). The triangulations use only points on the circles C, C′. We deliberately
chose non-concentric circles, i.e., with centers A , B. Right: Representation of the same surfaces
as C/Γ for a lattice Γ. Top: For real µ = 0.3 we get a rectangular lattice. Bottom: µ = 0.08 + 0.01i
yields a parallelogram.
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data/hyperelliptic_{g2,g3,g4}/data.xml

Figure 1.31: Uniformizations of the hyperbolic curves (1.68) with genus 2, 3, and 4. The
triangulation of the surfaces is a regular 1-to-4 subdivision of the convex hull of the branch
points. Due to the symmetries of these curves, the fundamental domains are regular hyperbolic
4g-gons. Since the triangulation is as symmetric as the curves, and because the solution of
the discrete uniformization problem is unique, the fundamental domains of the polyhedral
surfaces are also exactly regular hyperbolic 4g-gons. Any error in the domains is therefore due
to numerics and not due to the discretization.

infinity are resolved. For our purposes, a hyperelliptic curve is just a branched double cover of
the λ-sphere with branch points λ1, . . . , λ2g+1,∞ if d = 2g + 1 and branch points λ1, . . . , λ2g+2 if
d = 2g + 2.

We construct a polyhedral approximation of a hyperelliptic curve in the same way as for elliptic
curves (Section 1.7.2). We choose points p1, . . . , pn in addition to the 2g + 2 branch points and
take the convex hull. We cut the resulting polyhedron open along edge paths joining pairs of
branch points and glue a second copy along the cuts.

Figure 1.31 shows uniformizations of the curves

µ2 = λ

2g
k=1


λ − e

ikπ
g


. (1.68)

for g = 2, 3, 4 that were obtained this way. The curves are branched at the 2gth roots of unity and
at 0 and∞.

Mapping a polyhedral surface to a hyperelliptic curve. We can also map a triangulated surface
of genus g to a branched double cover of the sphere, provided it is symmetric with respect to a
discrete conformal involution with 2g + 2 fixed points, which are vertices. In the simplest case,
the involution is an isometry. (Compare Section 1.7.2, where we map flat tori to elliptic curves.)
Taking the quotient of the triangulation with respect to the involution, we get a triangulated
sphere with a discrete conformal structure, which we map discretely conformally to the sphere.
Figure 1.32 shows an example.

1.8.4 Geometric characterization of hyperelliptic surfaces

A Riemann surface R of genus g ≥ 2 is called hyperelliptic, if one of the following equivalent
conditions is true (and hence all are):
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data/branched_genus_2/data.xml

Figure 1.32: A triangulated genus-2 surface is mapped to a branched cover of Ĉ. The 180◦

rotation about the horizontal symmetry axis is a discrete conformal involution with 6 fixed
points marked in red, blue, and purple. The texture is a square grid in the plane, pulled back to
the doubly-covered sphere by Mercator projection, then pulled back to the surface. Middle and
bottom: branched cover of Ĉ, and a closeup of three branch points (stereographic projection).
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(i) R is conformally equivalent to some hyperelliptic curve.
(ii) R is conformally equivalent to a branched cover of the sphere with 2g + 2 branch points.

(iii) There is a conformal involution τ : R→ R with exactly 2g + 2 fixed points.

The involution τ is called the hyperelliptic involution of R. By the Riemann-Hurwitz formula, the
quotient surface R/τ is a sphere.

All Riemann surfaces of genus two are hyperelliptic, but for every genus greater than two, there
are Riemann surfaces that are not hyperelliptic. The following geometric characterization of
hyperelliptic Riemann surfaces is due to Schmutz Schaller [59, 60].

Theorem 1.8.2. Let R be a closed hyperbolic surface of genus g. Then the following statements are
equivalent:

(i) R is hyperelliptic.
(ii) R has a set of 2g − 2 simple closed geodesics which all intersect in one point and which intersect in

no other point.
(iii) R has a set of 2g simple closed geodesics which all intersect in one point and which intersect in no

other point.
(iv) R has a fundamental polygon that is a 4g-gon with opposite sides identified and equal opposite

angles.

The fundamental polygon of condition (iv) is symmetric with respect to a 180◦ rotation around
its center, which corresponds to the hyperelliptic involution on R. The 2g+2 fixed points on R are
the vertex of the polygon, its center, and the 2g edge midpoints. The axes of the 2g edge-gluing
translations all go through the center. They project to 2g simple closed geodesics on R that all
intersect in one point and intersect in no other point.

1.8.5 Example: Deforming a hyperelliptic surface

We uniformize a hyperelliptic surface obtaining a centrally symmetric fundamental polygon
with opposite edges identified as predicted by Theorem 1.8.2. The axes of the generators meet
in one point. Then we deform the surface slightly to a non-hyperelliptic surface to see how the
fundamental polygon and the axes change. The result is shown in Figure 1.33.

For this example, we construct an elliptic-hyperelliptic triangulated surface with additional
symmetry. A surface is called elliptic-hyperelliptic if it is conformally equivalent to a two-sheeted
branched cover of the torus.

Take two regular tetrahedra (the faces of which are subdivided several times to obtain a finer
mesh), cut them across pairs of opposite edges and glue them together to obtain a two-sheeted
cover of a tetrahedron branched at the four vertices. Now choose two paths in one of the sheets
that connect the centers of the tetrahedron’s faces in pairs. Cut the surface along these paths,
take another copy of this cut surface and glue corresponding cuts together to form an elliptic-
hyperelliptic surface of genus three that is a four-fold cover of a regular tetrahedron. The surface
possesses six anti-holomorphic involutions corresponding to the six reflectional symmetries of
the tetrahedron, and three holomorphic involutions corresponding to the rotational symmetries
of the tetrahedron of order two. Each of the holomorphic involutions has eight fixed points
covering the midpoints of a pair of opposite edges. Thus, this elliptic-hyperelliptic surface is
also hyperelliptic.

Figure 1.33 (left) shows a uniformization of the hyperelliptic elliptic-hyperelliptic surface. De-
stroying the symmetry by moving all points of the polyhedral surface in space by a small random
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data/non-hyperelliptic/tetrahedron_g3_01_symmetric.xml

Figure 1.33: Hyperelliptic vs. non-hyperelliptic. Left: Uniformization of a hyperelliptic surface
with a centrally symmetric fundamental polygon. The axes of the generators meet in a common
point. Right: Uniformization of the deformed surface, which is not hyperelliptic. The axes do
not meet in one point.

offset destroys the hyperellipticity of the surface, see Figure 1.33 (right).

Numerical Data. We list the numerical SO+(2, 1) matrices of the generators of the group

⟨T1,T2,T3,T4,T5,T6 | T6T5
−1T4T3

−1T2T1
−1T6

−1T5T4
−1T3T2

−1T1 = 1⟩ (1.69)

representing the hyperelliptic elliptic-hyperelliptic surface constructed in this section (see Fig-
ure 1.34). The matrices satisfy the relation with error ≈ 10−7.

T1 =

 2.05443154523212 −4.021591426903446 −4.403849064057392
−4.021591427085276 16.338309707059754 16.796236533536394
−4.403849064222335 16.796236533484112 17.392741252301292


T2 =

 7.906334736200989 −6.57792280760043 −10.236171033333449
−6.5779228079025245 7.265127613618063 9.749417813849163
−10.236171033527825 9.749417813638956 14.171462349831586


T3 =

 933.210063638192 509.0929753776527 1063.0407708335915
509.09297492442374 279.0228056502974 580.5414569092936
1063.0407706165242 580.5414573067374 1211.2328692884857


T4 =

 47.8208492808903 21.282776040302117 −52.33345184418173
21.28277609643665 10.67424906068982 −23.788571865092973
−52.333451867010325 −23.788571814871467 57.49509834158029


T5 =

 933.2100574645401 509.09297238055706 −1063.040763978619
509.092972765322 279.02280467565924 −580.5414545474814
−1063.0407641628826 −580.5414542100707 1211.2328621402066
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T1
T2

T3

T4 T5
T6

Figure 1.34: Generator labels

T6 =

 128.62265665383228 90.05086671584104 −157.0093831621644
90.05086668827934 64.5401174556973 −110.78621463208009
−157.00938314635744 −110.78621465448322 192.16277410952506



1.8.6 Example: Different forms of the same genus-2 surface

In this section we present Fuchsian uniformizations of the same Riemann surface represented
in three different ways:

• as hyperelliptic curve µ2 = λ6
− 1 (Figure 1.35),

• as Lawson’s genus-2 minimal surface in S3 [42] (Figure 1.36),
• and as a surface glued from six squares (Figure 1.37).

For each representation we choose corresponding fundamental polygons that allow the com-
parison of the uniformization:

• an octagon with canonical edge pairing aba′b′cdc′d′,
• an octagon with opposite sides identified, abcda′b′c′d′,
• a 12-gon that is adapted to the six-squares surface.

All data presented in this section is available on the DGD Gallery webpage [62].

Hyperelliptic curve.

We uniformize the hyperelliptic curve µ2 = λ6
− 1 as described in Section 1.7.2. The results are

shown in Figure 1.35.

Canonical domain: For the canonical fundamental domain we pick a vertex at 0 on one of the
sheets to be the vertex of the domain. We proceed as described in Section 1.8.1. Extra points are
chosen such that the triangulation is almost regular on the sphere. The system of loops on the
surface is chosen such that each loop starts at the base vertex, runs around two branch points,
and returns, see the red curves in Figure 1.35, top-left.
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data/lawson_curve/curve_canonical.xml

data/lawson_curve/curve_opposite.xml

data/lawson_curve/curve_cyclic.xml

Figure 1.35: Uniformization of the hyperelliptic curve µ2 = λ6
− 1. Left: Triangulated double

cover of the sphere branched at the 6th roots of unity, with the boundary of the fundamental do-
main shown in brown and the axes of generators shown in blue. Right: Fuchsian uniformization
and fundamental polygons. Canonical polygon (top), polygon with opposite sides identified
(middle), and 12-gon specially adapted to the six-squares surface (bottom).
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For the visualization we truncate the triangles of the universal cover to fill the fundamental
domain only. Figure 1.35 shows the triangulation on Ĉ (left) and the universal cover (right). Red
curves are the boundary of the fundamental domain. We show them also pulled back onto Ĉ.
Blue curves are simple closed geodesics on the surface. They are the axis of hyperbolic motions
identifying pairs of fundamental edges in the hyperbolic plane.

The branch points are clearly visible: The valence of the triangulation is doubled at these vertices.
The blue geodesic loops connect two branch points each.

Opposite sides domain: The opposite sides domain (second row) is chosen as described in Sec-
tion 1.8.1. All axes of hyperbolic motions intersect in a branch point of the curve. Red and blue
geodesic arcs are dual to each other. For the example model we chose a coarse discretization of
the underlying curve and truncate the triangulation to fit into the fundamental domain.

12-gon: This domain is chosen such that it corresponds to the domain suited for the square-tiled
surface as described below. To understand the system of loops, take the canonical system of
loops meeting at 0 (top row of the figure) and deform the loops until they touch at ∞. By this
move we introduce two more vertices on the fundamental polygon, namely the two vertices
corresponding to∞ on the two-sheeted cover. The triangulation of the example model is created
by a subdivision process. Starting from a triangulation with vertices at 0, ∞, at branch points,
and the mid-points on the equator in between the branch points, we subdivide using a linear 4-
to-1 split followed by a projection to the sphere. Thus the boundary of the fundamental domain
is contained in the edge set of the triangulation. For the visualization of the universal cover we
cut along these edges to draw the triangulation, Figure 1.35, bottom-right.

Lawson’s surface.

Figure 1.36 shows Fuchsian uniformizations of Lawson’s minimal surface in S3. The triangulated
surface model was kindly provided by Konrad Polthier [52].

This model of the Lawson surface realizes the hyperelliptic involution as a euclidean rotational
symmetry. Its symmetry axis meets the surface in six points. These fixed points of the hyperel-
liptic involution correspond to the branch points of the hyperelliptic curve representation. This
allows us to uniformize the model with corresponding fundamental domains.

The fundamental domain where opposite sides are identified is chosen as described in Sec-
tion 1.8.1. The vertex of this fundamental polygon has to be a point on the symmetry axis of the
surface. As the system of loops forming the boundary of the polygon and their identifying axes
are dual to each other, the common intersection of generator axes must lie on an intersection
with the symmetry axis as well, see Figure 1.36, middle-left.

The third fundamental polygon we present for Lawson’s surface corresponds to the square-tiled
segmentation of the surface as described below. As in the uniformization of the hyperelliptic
curve we have to deform the canonical polygon and introduce two new vertices corresponding
to antipodal points of the current vertex on the curve. The hyperelliptic curve of the Lawson
surface admits several anti-holomorphic involutions, one of which interchanges 0 and ∞. We
also have these involutions on the embedded surface realized as reflections about symmetry
planes containing the rotational symmetry axis. Hence we can find the new vertices of the
fundamental polygon by reflection of the canonical root vertex about these symmetry planes,
see Figure 1.36, bottom-left.

Six-squares surface.

Figure 1.37 (left) shows a surface glued from six squares, which is conformally equivalent to
Lawson’s surface and the hyperelliptic curve. Edges with the same marking are glued together.
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data/lawson_embedding/embedding5k_canonical.xml

data/lawson_embedding/embedding5k_opposite.xml

data/lawson_embedding/embedding5k_cyclic.xml

Figure 1.36: Uniformization of Lawson’s surface. Left: Triangulated model [52], with the
boundary of the fundamental domain shown in brown and the axes of the generators shown
in blue. Right: Fuchsian uniformizations and fundamental domains. Canonical domain (top),
opposite sides domain (middle), and 12-gon (bottom).
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data/lawson_squares/lawson_squares_branch.xml

Figure 1.37: Left: A surface glued from six squares. Right: Fuchsian uniformization and
fundamental domain.

We calculate a uniformization using the triangulation with vertices added in the centers of
the squares as shown. An adapted fundamental domain for this square-tiled translational
surface arranges all squares around a single vertex, see Figure 1.37 (right). By comparison
with Figure 1.35 (bottom) we see that the vertices in the center of the squares correspond to
the branch points of the hyperelliptic representation of the surface. The black, gray, and white
vertices correspond to the north and south pole of the hyperelliptic representation.
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Chapter 2

Surface panelization using periodic
conformal maps

This publication is joint work with Thilo Rörig, Agata Kycia, and Moritz Fleischmann. It was
previously published in the proceedings of the conference "Advances in Architectural Geometry
2014" [57].

We present a new method to obtain periodic conformal parameterizations of surfaces with cylin-
der topology and describe applications to architectural design and rationalization of surfaces.
The method is based on discrete conformal maps from the surface mesh to a cylinder or cone
of revolution. It comes with a number of degrees of freedom on the boundary that can be used
to obtain a variety of interesting panelizations. We illustrate different choices of parameters
for nurbs surface designs. Further, we describe how our parameterization can be used to get a
periodic boundary-aligned hex-mesh on a doubly-curved surface. We optimize this initial mesh
to consist of a limited number of planar regular hexagons that panel the surface.

2.1 Introduction

The panelization of surfaces remains a challenge in architectural design. CAD software such as
Rhino [56], delivers powerful nurbs surface modelling to the designer. Their ease of use have
made them a de facto standard for the design of freeform (and other) shapes in architectural
design, especially envelopes and facades of buildings.

The scale of buildings introduces challenges to surface-based modelling strategies: The large
scale of building elements demands that they are divided into smaller elements. The cost of
material and labor, standardized production lines, green building concepts, availability and
redundancy during construction periods demands for a high degree of similarity of these ele-
ments. Yet, the inherent UV subdivision of nurbs surfaces offers limited control over the layout,
shape and configuration of the panels. While strategies for the controlled and careful creation
of freeform surfaces have been presented and realized [27], the tiling of true freeform surfaces
through alternative algorithms is still a challenge.

The quality of a surface panelization solution can be defined in various ways. From an aesthetic
point of view the shape of individual elements is important. Further there are global conditions
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Figure 2.1: For a cylindrical nurbs surface (top-left) we create a seamless periodic conformal
parameterization (top-right). A new mesh (bottom-left) is then rationalized and the panels are
optimized for quantized regular hexagons (bottom-right).

Figure 2.2: Flow diagram of the algorithms described in this paper. From a nurbs surface a
triangle mesh is created. The parameterization part is described in Section 2.3. A pattern-mesh
is created using this parameterization. The creation and optimization of panels is described in
Section 2.5.

such as alignment with surface boundaries and smooth transition of element shape. From the
standpoint of fabrication, the elements should be repetitive. The contributions of this chapter
are:

• Periodic discrete conformal parameterization: We present an algorithm that maps a triangle
mesh with cylinder topology conformally to a cylinder or a cone of revolution. This allows us
to obtain seamless patterns on surfaces. It is a generalized version of the discrete conformal
parameterization scheme described by Springborn, Schröder, and Pinkall [69].

• Regular elements: We show how the periodic discrete parameterization can be used to
construct a panelization of the given periodic surface into a small number of repeating regular
elements.

• Applications to architectural design: We present a case study that initiated the development
and where the described methods have successfully been applied in the architectural design
context.

The chapter is organized as follows: Section 2.2 describes various parameterization schemes
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Figure 2.3: State of the art unroll methods can create patterns on a closed surface. The ApplyCrv
command of Rhinoceros produces boundary alinged periodic patterns but introduces unaccept-
able non-isotropic stretch (left). The SquishBack method creates sufficiently regular elements
but does not respect the periodicity of the surface (middle). Non-periodic conformal maps align
with the boundary of a cut surface. Along the cut the map is not continuous (right).

available to architectural geometers. We briefly discuss the shortcomings of current methods and
explain how we adress them with our method. Section 2.3 introduces the concept of periodic
discrete conformal parameterizations. See Figure 2.2 for a schematic view of the proposed
method. In Section 2.4 we present a case study that led to the development of this work.
Section 2.5 deals with the optimization of panels to meet requirements arising during the case
study. We give implementational details in Section 2.6 and close with an outlook on further
research.

2.2 Related work

In this section we will review different methods used to unroll/parameterize surfaces that are
accessible in the architectural design process on the example of Rhinoceros3D and 3rd party
plugins. All available tools lack at least one of the key features of the proposed method:

• Conformality of the mapping avoids non-uniformly stretched panels
• Periodicity of the parameterization is needed to layout panels seamlessly on the surface
• Boundary alignment avoids irregular cutting of panels at the boundary of the surface

Rhinoceros CreateUVCrv/ApplyCrv.

A nurbs surface is naturally equipped with a parameterization, i.e., a UV mapping from a
rectangle domain to the surface. For the surface of Figure 2.1 such a map can be used to
project a pattern from this rectangle to the surface (ApplyCrv in Rhinoceros). The pattern can be
constructed periodically as it is defined in the UV domain of the surface. However, in general
this method does not produce satisfactory results in terms of quality of elements for complex
freeform surfaces. The UV parameterization is not conformal and thus introduces non-isotropic
stretch and shear preventing the elements to be regular on the surface, see Figure 2.3, left. This
limitation exists even for developable surfaces.

Rhinoceros Squish/SquishBack.

The Squish/SquishBack command of Rhino maps a surface to the plane minimizing the amount
of stretch. While this is geometrically not a conformal map it produces acceptable patterns on
the surface. It is however not capable of calculating periodic maps to the surface. Thus it is not
applicable in our situation, see Figure 2.3, middle.
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Figure 2.4: A discrete periodic map from a cylinder to a triangulated surface. On the cylinder
all edges of the triangulation are geodesic arcs. If the cylinder is cut at the vertical orange path,
then it can be unrolled to the plane creating a rectangular domain.

PanelingTools for Rhino.

The paneling tools of Rhinoceros use the UV parameterization of the underlying surface to
populate grid-points over the surface. With the help of such a grid, panels are placed onto
the surface [46]. The shapes of the panels depend heavily on the nurbs-parameterization. An
example is shown in Figure 2.3, left.

Hexagonal tilings.

In the architectural context, hexagonal panelizations have been studied, e.g., by Zimmer et al. [76]
and Troche [71]. These aproaches however do not include regularity or special boundary
alignment as introduced in the current work. In the work of Schiftner et al. [58] the result of
the panelization depends on the choice of an initial triangle mesh that is optimized towards
touching incircles. This allows for a torsion free support structure of a non planar hex-mesh.
Hexagonal tilings for triangulated surfaces also have been studied by Nieser et al. [50]. They
focus on regularity but not on boundary conditions.

Mesh parameterizations.

There are a vast number of parameterization schemes for meshes. To elaborate on all methods
is beyond the scope of this section and we describe only the most relevant results here. General
purpose parameterization methods for triangle meshes produce high quality quad or hex meshes
for unstructured input data [17, 3, 69]. They have been used with success in the architectural
context, e.g., by Bo et al. [9] and Sechelmann et al. [64].

The basis of our method are conformally equivalent triangle meshes as described by Spring-
born et al. [69]. The straight forward method to map a surface with this approach is to cut it
open and map it to a rectangle domain. This method yields boundary aligned conformal maps
that however do not match along the introduced cut, see Figure 2.3, right. How to generalize
this method to overcome this limitation is the content of the following section.
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Figure 2.5: Periodic domains of parameterization of the surfaces shown in Figure 2.6. Left:
Map to a cylinder with geodesic boundary curves. Middle: Map to a cone of revolution with
hex-pattern-adapted angle. The domain is a polygon with quantized angles. Right: Isometric
boundary on a cone with hex-pattern-adapted angle. Panelizations created with the help of
these maps are shown in Figure 2.6.

2.3 Periodic conformal parametrization

In this section we describe our algorithm for the creation of periodic conformal maps for cylin-
drical meshes/surfaces, i.e., surfaces with the same topology as a cylinder. First we will review
the discrete conformal maps of Springborn et al. [69]. Then we show how it can be generalized
to yield periodic maps to cylinders or cones.

A smooth conformal map between two surfaces is a map that preserves angles. Intuitively, one
can think of a conformal map as a map that preserves the shape but not the scale of small
figures. For conformal surface parameterization, one looks for conformal maps from the plane
to a surface and vice-versa. These can be used to map different patterns onto surfaces in a way
that only isotropic stretch/uniform scaling is applied to the pattern elements. The method we
build onto is a triangle mesh based discretization of conformal maps [69]. For each vertex v of
the surface – interior or boundary – we may prescribe an angle θv that corresponds to the angle
sum of adjacent triangles in the target mesh. Starting from an input mesh and target angles θv,
the method calculates new edge lengths for the triangles of the target mesh such that the angle
sums at the target vertices are as prescribed. This goal is achieved by minimizing a convex
functional. The prescribed angles have to satisfy a Gauss-Bonnet type condition, i.e., the angles
at interior vertices have to match the angles at the boundary vertices. We will state the condition
for the special cases treated later in the article, see Equation (2.1).

For the parameterization problem, we want to construct a map from a surface to the plane.
To get a planar target mesh, the target angles have to be set to 2π for all interior vertices, i.e.,
the angles of the triangles adjacent to every interior vertex sum up to 2π. Thus the computed
target triangles can be laid out in the plane. At the boundaries there is still a certain degree of
freedom, which allows to map the surface to different shapes, e.g., a rectangle or a more general
polygon with prescribed angles. An alternative choice of boundary conditions yields a target
mesh whose boundary edges have the same lengths as the original mesh. Then the control over
the boundary angles is no longer possible.

This method for the parameterization of triangle meshes can be generalized to triangle meshes
with cylinder topology, see Figure 2.4. Instead of constructing a discrete conformal map from
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the surface to the plane, we construct a map to a cylinder or cone, whose image is isometric to a
polygonal region in the plane, see Figure 2.5. This works with an approach very similar to the
previous one. We start with the definition of a periodic parameterization.

Definition 2.3.1. Let M = (V,E,F) be a mesh with cylinder topology and vertices V, edges E, and
triangles F. Let D ⊂ C be a region on a cone/cylinder of revolution. A continuous bijection Φ : D→ M
is called a discrete periodic parameterization. D is called the domain of parameterization.

In the latter we always assume that the preimages of edges of M are geodesic arcs on the
cone/cylinder C. For panelization of periodic surfaces we need to make sure, that different
patterns match around the cone or cylinder. This yields certain restrictions on the cone that
serves as domain of parameterization.

Definition 2.3.2. Let C be a cone with apertureφ andΦ :
C ⊃ D → M be a discrete periodic parameterization of a
triangle mesh M with domain D. The map Φ is called
triangle adapted if the cone angle α is a multiple of π3
and quad-pattern adapted if it is a multiple of π2 .

φ

1

sin(φ/2)

α = 2π sin(φ/2)

This definition ensures that either a quad-, triangle-, or hex-pattern fits seamlessly onto the
surface after parameterization.

2.3.1 Periodic boundary conditions

If we want to construct periodic conformal maps we are allowed to specify angle sums θv
at boundary vertices. The condition for the sums of boundary angles differs from the simply-
connected case in the following way: The curvature at a boundary vertex v is given byκv = π−θv,
where θv is the angle sum of the adjacent triangles in the target mesh. For the two boundary
loops (v1, . . . , vn) and (w1, . . . ,wm) we have:

n
i=1

κvi +

m
j=1

κw j = 0. (2.1)

This condition makes sure that the two boundary curves “bend” the same amount and can
hence be wrapped around a cone. We will now show how boundary conditions can be used to
construct periodic patterns on the studied models. We start with a discrete conformal map of
the doubly-curved model from Figure 2.1 to a standard cylinder.

Straight cylinder.

The simplest way to generate a map to the cylinder is to set the target angles for all boundary
vertices to π. Hence the curvatures at the boundary vertices are zero and the two boundary
loops are mapped to “straight” curves. In this case both angle sums of Equation (2.1) vanish and
the target mesh can be wrapped around a cylinder, see Figure 2.5, left. The new edge lengths
computed with the variational principle correspond to the lengths on a cylinder. This cylinder
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Figure 2.6: Quantized periodic hexagonal panelizations. Boundary conditions affect the amount
of stretch in the interior of the surface. Top: Hexagonal pattern aligns with the boundary, a
strong condition that produces large deviation of panel sizes. Middle: Map to a pattern-adapted
polygon on a cone of revolution. The pattern contains exceptional points at the boundary. The
stretch is minimized while at the same time the pattern alignes with the boundary. Bottom:
Conformal map with the least stretch in the interior, pattern can be optimized to consist of
congruent hexagons alone. In each image, panels with the same colors are congruent. The
corresponding domains of parameterization are shown in Figure 2.5.
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Figure 2.7: A periodic conformal map onto a cylinder with special vertices creates the opportu-
nity to incorporate entrances (left) or concentration of support structure (right).

can be unrolled into the plane preserving angles and lengths. Therefore the two boundary
polygons are mapped to straight lines in the plane. These two straight lines have to be parallel
and of equal lengths. If the lengths of the boundary curves in the original model differ a lot, then
a map to a cylinder induces a lot of conformal stretch. This stretch can be reduced by specifying
special boundary conditions for a parameterization on a cone of revolution.

Cone of revolution.

As long as Equation (2.1) is satisfied we obtain a map to a general cone of revolution. In our case,
we require that the periodic parameterization is adapted to the target pattern. This means that
the two sums of Equation (2.1) need to be (the same) multiples of π3 (triangle or hex) or multiples
of π2 (quad). We present two methods to achieve this requirement: a uniform distribution and a
concentration of curvature.

If the boundary of the mesh should align with the pattern, then boundary angles need to be
quantized, i.e., multiples of π3 or π2 need to be chosen as target angles. In Figure 2.5, middle,
three vertices of the top and bottom boundary curve were manually assigned to 4

3π and 2
3π,

respectively. All other boundary angles are set to π, i.e., straight. Such a map can be used as a
starting point to obtain a tesselation with quantized hexagons as described in Section 2.5.

It is known that a discrete confomal map that does not change the lengths of the boundary
edges exhibits the least stretch in the interior of the surface. To obtain such a parameterization
we first construct a periodic conformal mapping onto an arbitrary cone such that the lengths
of the boundary edges are equal. The resulting angle sums at boundary vertices of the target
mesh determine the cone angle φ of the map. The cone angle of a pattern adapted periodic
parameterization is the closest multiple of the desired quantization. We distribute the difference
to the closest quantized angle uniformly to the individual boundary vertices and recompute the
map with these angle conditions. The obtained map is periodic and exhibits the lowest stretch
of all periodic conformal maps (see Figure 2.5, right).

Design and structural opportunities.

Opposed to achieving a homogenous pattern distribution, as described previously, it is also pos-
sible to use special boundary conditions to support structural purposes or design requirements.
If one aims for a panelization with boundary aligned patterns, then the target boundary angles
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Figure 2.8: Rendering of Case Study - A project where the method of conformal mapping was
utilized for the facade design.

must be quantized.

To include entrances in a facade it is possible to incorporate special boundary conditions. An
example with special boundary vertices with domain angles 4

3π and π3 is shown in Figure 2.7, left.
In the remeshed surface, the lower boundary curve bends inside at the vertices with angle 4

3π
around the vertex with angle π3 . This incorporates a natural entrance into the facade.

Another effect of such angle conditions is a densification of the pattern at the vertices with
small angles. Such a concentration of elements can be used to enforce structural properties of
a geometry. An example of a diagrid generated with such boundary conditions is shown in
Figure 2.7, right.

2.4 Case study: Hexagonal surface panelization

Here we present the findings of a first case study, where the method of discrete conformal
mappings was utilized for a real-world project. In this case study, a facade design, important
questions concerning panel layout, similarity and therewith constructability had to be addressed
at the early design stage.

Discrete conformal maps were used, as they allow the designer to explore alternative surface
textures and surface panelizations with great design flexibility. This distinguishes the method
from more constrained modelling techniques [27]. Through the method of conformal mapping,
opposed to naive UV mapping, the density of the surface panelization varies across the entire
surface, yet the shape of elements does not. This can be used for structural purposes, such as
diagrid layouts, or design driven, such as window distribution, see Figure 2.7. The optimization
of the surface panelization towards multiple criteria such as edge length and planarity was
consequential.

For a commissioned competition entry we tested and developed the method of periodic con-
formal mappings. The project, which served as a case study, was highly constrained, as the
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Figure 2.9: The data for the component-like construction of each panel was derived from the
mesh.

architects were asked to propose an alternative facade design for an existing design proposal
of a multifunctional exhibition center in China, see Figure 2.8. The massing was fixed, but
there were 2 alternative massing options (1 single curved and 1 doubly-curved envelope) to be
explored. Also, the client wanted a hexagonal tiling on the facade but only had a very limited
budget of approximately 200 Euro / sqm for the entire facade including sub structure in mind.

These limitations, in combination with the very short timeframe of 2 weeks for the entire rede-
velopment of the facade including a feasibility study drove the development of the conformal
mapping method. Especially, since existing solutions such as UV mapping led to unsatisfactory
results producing anisotropic stretch and shear of some regions in the master surfaces. Some
specific questions that had to be addressed for each massing option were:

• How many (different) panels would we need?
• Can we clad the entire surface with planar tiles?
• Can we equalize the edge lengths of each hexagon?
• Can we control the orientation of the panels?
• Can we achieve a regular pattern with a homogeneous visual appearance?

In the end, all the above questions were answered/solved.

The first step of development focused on achieving periodicity across the surface and alignment
with the boundary. While the issue of periodicity directly addressed the last question, it is
strongly related to the others as they could be achieved by successive optimization steps.

Already during the design phase a fully periodic tiling was achieved. In a following step
the panels were planarized, grouped by dimension and their edge lengths were equalized.
Finally, a control for the panel orientation based on the tangents of the nurbsmaster surface was
implemented. This hexagonal pattern served as a base for the facade engineering team. Due
to the high cost demands, a simple component system that served as a sub-structure for each
panel was developed, see Figure 2.9.
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Figure 2.10: Close-up rendering of facade.

Unfortunately the given massing options for the building were not very challenging in terms of
geometry. One massing option was a simple extrusion and the other had very little distortion.
After the successful submission of the project, we decided to continue the development and test
the method of discrete conformal mappings on more extreme base geometries.

During these tests a Grasshopper plug-in for VaryLab has been developed and refined [63]. We
focused on tiling surfaces with a large distortion/stretch and double curvature. The main aim
was to tile these surfaces without distorsion. This led to focus on the boundary conditions. The
designer is now able to choose between an aligned mapping where the tile-pattern aligns with
the underlying surface boundary. The trade-off being, that panels need to vary in sizes. Or
one chooses a “homogeneous tiling”, where all the tiles are the same, but do not align with the
boundary. VaryLab’s numerous optimization algorithms can be applied and combined with
either of the two approaches, see Figure 2.6. During the development, we realized that through
singularities and special boundary conditions, one is able to control the density and distribution
of the pattern on the surface and along its boundaries, see Figure 2.7.

2.5 Rationalization: Hexagon optimization

Starting from the conformal parameterization we optimize the obtained hex-mesh to have
identical regular hexagons. We use a global optimization approach and define energies to
achieve planarity, regularity, and equality.
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Planarity.

The planarity function is a simple adaptation of the usual energy used to planarize quad-meshes:
A quadrilateral {A,B,C,D} is planar if the volume of the tetrahedron {A,B,C,D} is zero. So if we
require the volume of all tetrahedra spanned by the vertices of a polygon to be zero we obtain a
planar polygon. The planarity energy Epl can easily be expressed in terms of determinants.

Regularity.

A regular planar polygon is characterized by having equal edge lengths and equal angles at all
vertices. As for planarity we define an energy that is minimized in case of regular polygons.
The interior angle at a vertex of a regular p-gon is p−2

p π. So an energy Ereg that is minimized for
a regular p-gon with vertices {v1, . . . , vp} and corresponding angles {α1, . . . , αp} is

Ereg(P) = λP Eα(P) + µP Eℓ(P) with

Eα(P) =
p

i=1

(αi −
p − 2

p
π)2 Eℓ(P) =


(vi,vi+1)

(∥vi − vi+1∥ − ℓP)2,

where ℓP is the desired target edge length for the polygon and λP and µP weights for the
different energies. In a first step, the target length can be chosen to be the average edge length
of the polygon or the shortest edge length among the edges to avoid overlap. Note that, the
normalization of the angles already implies planarity of the polygons. Nevertheless, we consider
the planarity energy since it increases the rate of convergence.

Starting from a cylindrical or conical periodic conformal parameterization we construct a hex-
mesh that may or may not be aligned with the boundary. As a consequence of the conformality
of the parameterization the angles of the hexagons are almost 2π

3 . In the following we do not
work with a water tight mesh any more but split the surface into individual hexagonal panels.
We optimize the edge lengths of the hexagons to be constant per face using Eℓ. To avoid overlap
we choose the length of the shortest edge of each face as target length. We add the planarity
and angle regularity functionals Epl and Eα to the optimization and obtain planar and regular
hexagons. Each of the hexagons has its own constant edge length. Finally, we can rationalize
the panelization further, by choosing a discrete set of edge lengths as target lengths for the
polygons in the edge length functional Eℓ. Due to the symmetry of the edge length functional
for regular hexagons edge length optimization will not destroy the planarity and regularity of
the hexagons. So it is possible to adjust the edge lengths using Eℓ only. This quantization process
is illustrated in Figure 2.11. The used method allows to include additional functionals into the
optimization, e.g., functionals minimizing the distance to a reference surface or the distribution
of gaps tangent and normal to the surface. We have not yet added these functionals due to the
early phase of the presented project.

The range of lengths obtained depends on the initial hex-mesh constructed on the chosen target
geometry. The effect of the different periodic conformal parameterizations on the quantization
is shown in Figures 2.5 and 2.6.
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Figure 2.11: Panelization of a doubly curved design alternative of the case study shown in
Figure 2.8. Left: Unquantized panelization. Right: Quantization to 11 panel sizes with edge
lengths varying from 1.5m to 2m.

Figure 2.12: Grasshopper networks connecting Rhino and VaryLab. In the first step we send
mesh data to VaryLab running on the same machine at localhost:6789 (left). In the second
step we collect the result from this VaryLab instance and create polygons from the mesh’s faces
(right).

2.6 Implementation

We use the software package VaryLab [63] in combination with Rhino’s Grasshopper to calculate
discrete conformal maps to the cylinder or cone as shown in Figure 2.5. Figure 2.12 shows
the Grasshopper network used to connect Rhino and VaryLab. VaryLab uses the optimization
package TAO/PETSc [8, 7, 68] to perform energy minimization. We calculated the exact gradients
of the functionals for the optimization and used the conjugate gradient method of TAO.

2.7 Conclusion

The collaboration between architect and math department proved to be very satisfactory for
both parties: The architects did provide specific questions related to real world projects whilst
the mathematicians were able to translate these questions into mathematical formulas and
provided meaningful results that could not have been achieved alternatively. A common design
framework such as Rhino and the basic knowledge of nurbs geometry and modeling techniques
proved to be of essential importance for the successful collaboration between the teams.

As a result of this collaboration, we presented a method for homogeneous periodic panelization
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of nurbs surface geometry of cylinder type. A natural future development is the design of
suitable support structures possibly with torsion free nodes. This can be derived from the panel
layout by intersecting the panel planes. Furthermore the quantization of edge lengths of regular
hexagonal panels is not yet fully explored. A denser distribution of quantized edge lengths
in regions with great edge length variance can possibly improve the layout and number of
different panels. For a later stage of the project one could add optimization for the gaps between
the panels, which has not been incorporated yet. It would also be interesting to look at more
extreme examples, even if those might not fit the architectural context.

We also started to look into how patterns can be applied across multiple surface patches, such
that the pattern aligns at the crease where the patches meet. This would necessitate to develop
methods for more general mappings and the applications of multiple boundary conditions; A
field that is yet to be developed.

While the method presented does require a certain level of expertise from the user, we see
the potential of this post-panelization strategy of freeform surfaces in the architectural design
process: Opposed to carefully constrained (parametric) modelling approaches this method
allows to realize even distributed, homogenous panelizations on arbitrary surfaces with cylinder
topology at early design stages - something a lot of designers are interested in.



Chapter 3

Quasiisothermic mesh layout

This chapter is joint work with Thilo Rörig and Alexander Bobenko. Most of the material
presented here was published previously in the proceedings of the conference "Advances in
Architectural Geometry 2012" [64]. We added Section 3.5 on isometric deformations of s-
isothermic surfaces and Section 3.6 about a discrete ellipsoid.

In architecture the quality of a quad-mesh depends on the shape of the individual quadrilaterals.
The ideal shape from an architectural point of view is the planar square or rectangles with fixed
aspect ratio. A parameterization that divides a surface into such shapes is called isothermic, i.e.,
angle-preserving and curvature-aligned. Such a parameterization exists only for the special class
of isothermic surfaces. We extend this notion and introduce quasiisothermic parameterizations
for arbitrary triangulated surfaces.

We describe an algorithm that creates quasiisothermic meshes. Interestingly many surfaces
appearing in architecture are close to isothermic surfaces, namely those coming from form
finding methods and physical simulation. For those surfaces our method works particularly
well and gives a high quality and robust mesh layout. We show how to optimize such meshes
further to obtain disk packing representations. The quadrilaterals of these meshes are planar
and possess touching incircles.

3.1 Introduction

A key problem in architectural geometry is to convert surfaces created by form finding methods,
physical simulation, or manual modeling to quadrilateral meshes, which are preferred for glass-
steel structures. There are many possible quad-meshes that approximate a given shape and we
study those that consist of principle-curvature-aligned conformal squares, see Figure 3.2. Not
all surface shapes can be approximated by such meshes. A smooth analog of a surface with
this property is called an isothermic surface. These surfaces admit conformal curvature line
parameterizations, i.e., angle-preserving parameterizations aligned with the principle curvature
directions. Their discrete counterpart are so-called s-isothermic meshes. These meshes have the
additional property that neighboring quadrilaterals possess touching incircles, see Figure 3.7.

The class of isothermic surfaces comprises, for example, constant mean curvature surfaces.
Roofs that act shell-like turn out to have almost constant mean curvature. These are the kinds
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Figure 3.1: The algorithmic steps of this paper: For a triangulated surface we calculate texture
coordinates by solving a boundary value problem for principle curvature directions on boundary
edges (checker board texture and red directions). The edges of the corresponding quad mesh
align with the curvature directions (red crosses). The mesh is then optimized towards planar
quads with touching incircles.
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(a)

(b)
(c)

(d)

Figure 3.2: The surface examples of this paper. All have been parameterized and remeshed. (a)
The Teaser surface is the minimizer of a spring energy with a smooth fixed boundary curve.
(b) A Minimal surface with polygonal boundary curve. (c) Dome: Part of a NURBS surface
exhibiting positive curvature and two curvature field singularities. (d) Roof structure with
planar boundary curve and regions of positive and negative curvature.

of surfaces that initiated our study of conformal curvature line parameterizations in the archi-
tectural context. Both conformality and alignment with curvature lines are favorable properties
for meshes.

The contributions of this paper are:
Definition of quasiisothermic parameterizations: We propose a definition of quasiisothermic
parameterizations of triangle meshes. It is based on angles between curvature directions and
edges of a triangle mesh. We define the quasiisothermic modulus that measures how isothermic
a parameterization is. If this modulus is zero we obtain discrete isothermic parameterizations
in the sense of our definition.

Parameterization Algorithm: We give an algorithm that creates quasiisothermic parameteriza-
tions based on discrete conformal maps of triangle meshes to the plane. This approach is built
on top of the conformal mapping technique of Springborn et al. [69]. We inherit the speed and
superior projective mapping properties of their parameterizations.

Variational principle for circle packing quad-meshes: The obtained parameterizations are
used for remeshing and we optimize quadrilaterals to have touching incircles by minimizing
a novel energy. These s-isothermic meshes have been studied in discrete differential geometry
and possess some remarkable properties, e.g., minimal s-isothermic surfaces may be deformed
isometrically retaining the same Gauß map.

The rest of the paper is organized as follows: Section 3.2 gives an overview of existing param-
eterization schemes and their relation to our approach. We also give reference to the related
mathematical literature in discrete differential geometry. In Section 3.3 we define quasiisother-
mic parameterizations and a corresponding quality measure. In Section 3.4 we describe an
algorithm to obtain quasiisothermic parameterizations with small modulus. We describe the
connection to discrete conformal maps and discuss how we deal with singularities. A variational
principle to generate s-isothermic meshes is presented in Section 3.5. At the end of the section
we show the effect of our optimization on several examples from different classes of surfaces.
In the final Section 3.7 we sum up the results and propose extensions and enhancements subject
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to further research.

3.2 Related work

There has been considerable work on conformal parameterizations as well as on curvature
line parameterizations related to our quasiisothermic scheme. We can only give a selection
of previous work here. For a general background on mesh parameterization we refer to the
surveys by Floater and Hormann [24] and Sheffer et al. [67].

Our algorithmic approach is based on the discrete conformal equivalence of triangle meshes
as introduced by Springborn et al. [69] (see the work of Bobenko et al. for the mathematical
background [13]). The convex functional optimized by Springborn et al. constructs a conformally
equivalent flat mesh for specified boundary conditions and singularities. Our method is related
to work on angle based flattening by Sheffer and de Sturler [66]. They aim for conformal
parameterizations and express this by the additional constraint, that triangle angles have to
be close to the original ones on the surface. For discrete isothermic parameterizations the
definitions coincide.

Parameterizations aligning with lines of principle curvature were constructed by Alliez et al. [4].
Their method involves the integration of curvature vector fields and does not include an opti-
mization towards conformality. Global parameterizations following arbitrary frame fields (in-
cluding in particular principle curvature fields) are constructed in the work of Kälberer et al. [35].
They use discrete Hodge decomposition and harmonic vector fields to obtain a globally consis-
tent parameterization. Their QuadCover algorithm can deal with surfaces of arbitrary genus and
treats singularities using a suitable branched cover. Both algorithms cover arbitrary triangulated
surfaces and implementations are highly complex.

The use of variational principles to enforce desired properties such as planarity of quadrilateral
faces has been successfully used in architectural geometry. Liu et al. [44] propose an algorithm
to optimize a quadrilateral mesh to become planar and even conical. Pottmann et al. [55] use
functionals to approximate freeform surfaces with single curved panels. The energy minimized
in Section 3.5 is a combination of a new functional with an energy recently described by Schift-
ner et al. [58]. They construct circle packing triangle meshes that approximate a given surface
by minimizing a combination of energies.

Discrete s-isothermic minimal surfaces are defined in terms of their Gauß map by
Bobenko et al. [11]. This Gauß map is a Koebe polyhedron with edges tangent to a sphere.
These Koebe polyhedra also occur in the study of edge offset meshes by Pottmann et al. [54],
who again use a variational approach to obtain support structures. Another parametrization
technique creating quad-dominant meshes guided by conjugate parameter directions is given by
Zadravec et al. [75]. Their algorithm includes a level set approach to circumvent the integration
of a vector field.

The notion of discrete s-isothermic meshes was introduced in the mathematical context by
Bobenko and Pinkall as a special class of quad meshes [12]. The mathematical theory of these
meshes has since then been an active field of research in discrete differential geometry. A good
overview of the recent development and literature can be found in the book by Bobenko and
Suris [16].



3.3. DISCRETE QUASIISOTHERMIC PARAMETERIZATION 81

Φjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
v

u

αkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαki αjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjk

αijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαij αkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαkiαki
αjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjkαjk

αijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαijαij

Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)Φ(k)

Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)Φ(i)
Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)Φ( j)

Figure 3.3: A discrete isothermic parameterization. Angles between triangle edges and a
curvature direction family are preserved by the map.

3.3 Discrete quasiisothermic parameterization

In this section we introduce the notion of quasiisothermic parameterizations and the corre-
sponding quality measure.

Discrete parameterizations

Let M = (V,E,F) be a triangle mesh. The elements of V are the vertices of the mesh denoted
by simple indices i ∈ V. Edges are denoted by double indices ij ∈ E, and faces are denoted
ijk ∈ F. A triangulated surface is a map S : V → R3, i →→ (xi, yi, zi). We call a map Φ : V → R2,
i →→ (ui, vi) a discrete parameterization of the surface S. We only consider orientable surfaces and
parameterizations that preserve the orientation of the triangles with respect to the canonical
orientation of R2.

The next definition connects arbitrary parameterizations with certain directions tangent to the
surface S, e.g., curvature directions. Such a direction is encoded as an angle per edge.

Definition 3.3.1. Let α : E→] − π2 ,
π
2 ], ij →→ αij be a map that assigns an angle to each edge. A discrete

parameterization Φ : V → R2, i →→ (ui, vi) is called a discrete parameterization with α if

tanαij =
ui − u j

vi − v j
(3.1)

for all edges of the mesh.

In other words, in a parameterization with α the image of an edge ij ∈ E under the map Φ
encloses the prescribed angle αij with the v-axis of the parameter space. One could equally use
the u-axis here.

Quasiisothermic parameterizations

Our main example of a parameterization with an angle function α comes from α defined by
the curvature directions of a surface S : V → R3 (see Fig. 3.3). For a triangulated surface
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curvature directions and magnitudes can be calculated and assigned to edges. This is usually
done by averaging curvature information over neighborhoods of points on the surface [22]. A
discrete parameterization with angle function α stemming from the curvature direction field
is then called a discrete isothermic parameterization. Indeed, the latter is just a curvature line
parameterization. In our case the curvature directions are mapped to the coordinate directions
in the (u, v)-plane. The map can be treated as conformal: Angles between edges and curvature
directions are preserved.

Generic surfaces do not allow for isothermic parameters (those admitting isothermic parame-
terizations are called isothermic surfaces). Therefore we do not expect a parameterization with
given α to exist in general. To be able to deal with arbitrary surfaces we introduce the notion of
discrete quasiisothermic parameterization. The idea is to obtain a parameterization with angles
α̃ as close to the curvature directions α as possible. Let

Qα(ij) =
α(ij) − α̃(ij)

 (3.2)

where α̃(ij) is angle the between the v-axis and the edge ij in parameter space.

Definition 3.3.2. We call a discrete parameterization Φ with angle function α quasiisothermic with
modulus Q ∈ R+ if

Qα(ij) ≤ Q (3.3)

for all edges ij ∈ E.

The motivation for this measure of quasiisothermicity is the following: If Q is small the di-
rections of principle curvature on the surface are almost tangent to the parameter lines of the
parameterization. For a modulus of zero we have an in a sense angle preserving map where
edges enclose the same angles with the coordinate axes in parameter space as with curvature
directions on the surface. We will now create parameterizations that have small Q.

3.4 Minimization of the functional

In this section the surface M is a triangulated surface with one boundary component. We will
now construct a function Φ that has zero approximation error Qα at boundary edges and is a
discrete conformal map in the sense of Springborn et al. [69] in the interior of the surface. We
argue under which circumstances this leads to nice behaviour in the interior. We start by briefly
introducing discrete conformal maps and the boundary conditions we need for our purposes.

Discrete conformal maps

We recall the definition by Springborn et al. of discrete conformal maps via conformal equiva-
lence of triangle meshes. It is stated in terms of lengths of the surface edges and corresponding
parameter edges in the (u, v)-plane.

Definition 3.4.1. A discrete parameterization Φ is conformal if there exists a function µ : V → R,
i →→ µi such that the following condition for the edge lengths lij on the surface and l̃ij = ∥Φ(i) − Φ( j)∥ in
parameter space holds

l̃ij = µiµ jlij. (3.4)
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Figure 3.4: Curvature boundary conditions: In parameter space the interior angle θ j at the
vertex Φ( j) has to be chosen such that curvature directions given by angles αij and αjk align with
the v-axis. This choice is unique up to addition of kπ. The above pictures show two possible
layouts in the parameter plane depending on the interior angle sum on the surface.

For a given triangle mesh there is a unique solution µ that retains the boundary edge lengths.
Another unique solution can be obtained by fixing the angles between consecutive boundary
edges. These angles have to be chosen consistently obeying the Gauß-Bonnet relation (see the
section about singularities).

The function µ for a given triangle mesh can be found as the minimizer of a convex functional.
Thus its computation is efficient. The resulting parameterization is created by a breadth-first
layout that enumerates all triangles and assigns texture coordinates. In addition to boundary
angles one can ask for solutions that contain special interior vertices where the sum of triangle
angles is not equal to 2π (see Fig. 3.1). These so-called cone points will be inserted at singularities
of the parameterization.

Curvature boundary conditions

Let α : E →] − π2 ,
π
2 ] be an angle function derived from numerical curvature directions and

the given surface orientation. Let ij ∈ E and jk ∈ E be two consecutive boundary edges with
common vertex j and let θ̃ j be the sum of interior triangle angles on the surface at this vertex.
The direction of the edge Φ(ij) (resp. Φ(jk)) is determined by the angle αij (resp. αjk), since the
curvature directions encoded by the α’s should align with the v-axis. The orientation of the
surface (resp. the boundary edges) defines the angle θ j between the edges Φ(ij) and Φ(jk) up to
addition of kπ (see Fig. 3.4). To make the angle unique we require that the difference between
the original surface angle θ̃ j and the angle in the parameter plane θ j is as small as possible, i.e.,
choose k > 0 as small as possible such that

| ∠(Φ(ij),Φ(jk)) + kπ                                  
θ j

−θ̃ j| ≤ π/2.

See Figure 3.4 for an illustration of the alignment in the parameter plane. The angles θ j at
boundary vertices serve as boundary conditions for the discrete conformal parameterization. A



84 CHAPTER 3. QUASIISOTHERMIC MESH LAYOUT

Figure 3.5: Parameterization of the Roof model. The discrete curvature lines approximate
curvature directions with high quality. See Section 3.4 for a discussion.

conformal parameterization with these boundary conditions will then have perfect alignment
of curvature directions at the boundary.

Singularities

There exists an analog of the smooth Gauß-Bonnet theorem for discrete surfaces that relates
the Gaussian and the boundary curvature to the Euler characteristic. During parameterization
we construct a metric that is flat everywhere except for cone singularities where positive or
negative curvatures are introduced. For the purpose of curvature line parameterizations we can
only have cone points with discrete curvatures of π, 0, or −kπ at singularities of the curvature
direction field. The Gaussian curvature κi at interior vertices i ∈ VI is the angle defect, i.e.,
κi = 2π − θi, where θi is the sum of the angles at the vertex i. For a boundary vertex j ∈ VB
the corresponding geodesic curvature is defined by κg

j = π − θ j. So if we split the vertex set
V = VB∪VI into boundary vertices VB and interior vertices VI the discrete Gauß-Bonnet theorem
becomes: 

i∈VI

κi +

j∈VB

κg
j = 2πχ, (3.5)

where χ is the Euler characteristic of the surface (χ = 1 for disks). Since all curvature directions
at boundary edges in parameter space become parallel, the boundary curvature adds up to a
multiple of π. If this sum happens to differ from 2π, there must be singularities in the curvature
field and we have to compensate the deficit at interior vertices to satisfy Equation (3.5). In
Figure 3.5 the boundary curvature sum of the domain is 4π. So by inspection of the curvature
field in the interor of the surface we picked two singularities each of curvature −π to satisfy the
Gauß-Bonnet equation. They correspond to cone points with angle 3π in the parameterization.
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Implementation

The algorithm to compute a quasiisothermic parameterization with vanishing modulus at the
boundary of the domain is the following:

(1) Generate curvature directions and compute α at the boundary
(2) Calculate boundary angles θ and pick singularities
(3) Compute conformal parameterization with given θs
(4) Perform remeshing
(5) Remove cone point cuts

To estimate principle curvature fields we use the method of Cohen-Steiner and Morvan [22],
where the curvature tensor is averaged over a disk of a given radius centered at edge midpoints.
Together with a fixed orientation of the surface this defines the angle function α.

We deduce the angles θ for the boundary vertices as described in Section 3.4. These angles are
the boundary curvatures we plug into the algorithm of Springborn et al. to obtain a conformal
parameterization. If necessary, we pick singularities for the curvature field at vertices and
prescribe corresponding cone angles by inspection of the curvature direction field on the interior
of the surface. A consistent singularity choice can easily be checked using Equation (3.5). By
construction we can only process curvature fields with isolated singularities.

We layout the new edges in the parameter plane such that an arbitrary boundary edge Φ(ij)
intersects the v-axis in the desired angle αij. By construction the intersection angles coincide
with the prescribed α’s for all boundary edges. The domain of parameterization can contain
singularities, which are modeled as cone points with prescribed curvature. Therefore we have
to cut along paths from the cone points to the boundary of the mesh. The layout overlaps if
singularities with negative curvature are used. To create seamless parameter lines we use the
rectification approach described by Springborn et al. [69].

Finally, we create a new mesh based on a regular (u, v)-grid in R2. The remeshing process is
carried out as a subdivision step followed by some cleanup and regluing: We use the projective
interpolation in the texture domain to increase the quality of the result. Previously cut paths
from singularities to the boundary are sewed up to obtain the final remesh.

Examples and quality

With the quasiisothermic modulus Qα on edges introduced in Equation (3.2) we are now able to
measure the quality of our parameterizations.

There are two kinds of examples to consider: The first class of meshes stems from smooth sur-
faces that admit conformal curvature line parameterizations, i.e., triangulations approximating
isothermic surfaces. The second class consists of arbitrary non-isothermic surfaces. For almost
isothermic surfaces we expect our parameterization to reconstruct the isothermic coordinates
up to numerical precision and hence Qα to be reasonably small. For non-isothermic surfaces we
achieve the correct directions on the boundary but lack accuracy in the interior. In Table 3.1 we
summarize the numerical results obtained from the surfaces of Figure 3.2.

Isothermic surfaces. The class of smooth isothermic surfaces contains surfaces of constant
mean curvature, surfaces of revolution, and conic sections. We use the Minimal example as
an instance of an isothermic surface with mean curvature zero (Figure 3.2b). As expected this
surface exhibits the highest curvature line quality of all tested meshes. The error however cannot
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Figure 3.6: The quality of the parameterization is measured in radians per edge of the underlying
triangulation. The checkerboard texture indicates the parameter lines of the map. Small (red and
yellow) beads represent good curvature direction quality, big beads (green and blue) represent
high deviation. The color of the histogram corresponds to the color of the beads. Note that the
mean error of the Roof surface (top) is half the error of the Dome. See also Table 3.1 for detailed
quality measures of the other surfaces.
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#E #∂E Qαmean Qαmax Qασ
Minimal 6260 450 0.036 0.603 0.033
Teaser 17550 1000 0.057 1.20 0.066
Roof 3766 470 0.051 0.610 0.059
Dome 1900 350 0.133 1.52 0.157

Table 3.1: The curvature line approximation quality of the examples. #∂E are the number of
boundary edges. Qασ is the standard deviation of Qα.

vanish completely since the surface’s curvature field contains singularities. In the vicinity of
these points the numerical curvature directions contain significant amounts of noise.

Non-isothermic surfaces. Non-isothermic surfaces are surfaces that do not admit a parameter-
ization with conformal curvature lines. We investigate the properties of surfaces (a), (c), and (d)
displayed in Figure 3.2.

The Teaser surface was created as a minimizer of a spring functional fixing the boundary and
modelling interior edges as springs of rest length zero. It is not far away from a minimal surface
with the same boundary. The curvature line pattern however differs substantially as it contains
singularities whereas the minimal surface with this boundary curve does not. The quality of
the curvature line pattern is also very high. The mean angle error of the numerical directions is
3.2 degrees. Note that the deviation Qσ from the mean value is also very low. For this surface
the coordinates generated by our algorithm are a globally good approximation to conformal
curvature lines.

A quality plot of the Roof surface (Figures 3.2d and 3.5) is shown in Figure 3.6. Surprisingly,
the quality of the curvature lines is as high as in the Teaser or the Minimal case. This suggests
that a slight variation of the surface yields an isothermic surface. See also Figure 3.5 for a visual
impression of the quality of the curvature lines.

The Dome model (Figure 3.2c) is created from a NURBS surface. The quality plot (Figure 3.6)
reveals areas of high angle deviation especially around the singularities. Other areas, in par-
ticular those near the boundary, are of high curvature line quality. The distance to the nearest
isothermic surface is expected to be larger than in the previous examples. More evidence for
this is given in Section 3.5.

Discussion. Our parameterization scheme works well for surfaces that are not too far away from
surfaces that possess isothermic coordinates. In the case of surfaces stemming from minimal
or constant mean curvature surfaces we get almost perfect approximation quality of curvature
lines. These are surfaces that are particularly interesting when designing beam layouts for
roof structures that where form-found. For other surfaces the parameterization is conformal
and the parameter line pattern captures the combinatorics of the curvature line pattern while
approximating the curvature line geometry. There are of course surfaces for which our method
is not applicable. If the boundary is too short compared to the overall size of the surface we
cannot expect the solution to follow curvature lines as the distance to the boundary increases.

3.5 Discrete s-isothermic surfaces

Starting with a quasiisothermically parameterized mesh with low modulus we now aim to create
discrete s-isothermic surfaces that stay in the vicinity of the input surface. S-isothermic surfaces
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Figure 3.7: S-isothermic meshes created from the models presented in Figure 3.2. The inner
quadrilaterals are optimized towards touching incircles. A series of touching circles in a row
can be interpreted as discrete curvature line.

i

β j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
rβ
j
r

β j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
lβ
j
l

j

βi
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
lβ
i
l βi

rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβ
i
rβi
r

Figure 3.8: Labels for the touching-circle functional at an edge. The circles touch if the ratio
cot


βi/2


/ cot


β j/2


is equal on both sides of the edge.

were introduced by Bobenko and Pinkall [12]: A quadrilateral mesh is s-isothermic if (i) all the
quadrilaterals are planar, (ii) all faces have incircles, and (iii) the incircles of adjacent quadrilat-
erals touch. Figure 3.7 displays s-isothermic surfaces derived from our parametrizations shown
in Figure 3.2.

Variational Principle

In this section we introduce an energy whose minimizers are s-isothermic surfaces. We denote
quadilaterals by i jkm ∈ F where the indices are in cyclic order. The s-isothermic energy ES
consists of three parts:

ES := λ1Eplanar + λ2Eincircle + λ3Etouch (3.6)

The planarity energy Eplanar penalizes non-planar quadrilateral faces. For each quad it can be
defined either by the distance of the diagonals (an idea attributed to Peter Schröder [55]) or the
volume of the tetrahedron spanned by the four vertices. We give the formula for the former
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here.

Eplanar =


ijkm∈F


∆ji,∆mj × ∆ki

2

∥∆mj × ∆ki∥
2 (3.7)

Here ∆i j is the vector pointing from vertex i to j.

For Eincircle we use the energy defined by Schiftner et al. [58] based on the fact that the sum of
opposite edge lengths must be equal for a planar quad to possess an incircle.

Eincircle =


ijkm∈F


lij + lkm − ljk − lmi

2
(3.8)

The energy Etouch is a new energy that enforces touching incircles if faces are planar and possess
incircles. It is defined per edge, see Figure 3.8 for the exact labeling of the angles at one edge.
For an interior edge i j ∈ E we define

Etouch(ij) =

cot
β j

l

2
cot
βi

r

2
− cot

β j
r

2
cot
βi

l

2


2

. (3.9)

On boundary edges the energy is zero. All energies can be formulated in terms of the vertex
coordinates and the derivatives can be calculated explicitly.

Since all energies are in general non-convex we need a good initial guess to find meaningful
minimizers of ES. S-isothermic minimal surfaces converge to isothermic parameterizations of
smooth minimal surfaces [11]. For general s-isothermic surfaces this is an open conjecture. The
parameterizations obtained in Section 3.3 are good candidates to start from with the optimization
of the functional. We use the non-linear optimization package PETSc/TAO [7, 8] and its java
binding [68] to find minimizers of ES. Figure 3.10 shows convergence plots of ES for the four
models that were discussed in the previous section.

As seen in the quality analysis of Section 3.4, the Teaser, the Minimal, and the Roofmodels are
quasiisothermic surfaces with low modulus. For these models the corresponding s-isothermic
surface is also close to the input surface. Figure 3.10 shows the energy during the optimization.
Here the three close-to-isothermic meshes start with a lower energy than the Dome model.
After the Dome has passed some iterations it exhibits convergence properties similar to the
other models. As this surface converges against a discrete s-isothermic surface, we observe a
considerable change in shape during the first iterations especially around the singularities.

Isometric Deformations of Minimal Surfaces

Every smooth minimal surface possesses a 1-parameter (associated) family of non-trivial isomet-
ric deformations. All surfaces in this family have the same Gauß map. For discrete s-isothermic
minimal surfaces this construction is discretized by Bobenko et al. [11]: Edge lengths and the
conformality of the parameterization are preserved. We need to introduce the concept of dual
surface to construct the family of isometric surfaces.

The Dual Surface. In differential geometry for isothermic surfaces there is a notion of a dual
surface. This dual or Christoffel transform is also an isothermic surface. Both surfaces are
parameterized with isothermic coordinates. This setup can be discretized using the definition of
discrete s-isothermic surfaces. The dual surface can be constructed using the incircle structure of
s-isothermic meshes. We introduce consistent signs on edges on a discrete s-isothermic surface
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Figure 3.9: The s-isothermic circle packing on the Roofmodel in detail.
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Figure 3.10: Convergence behavior of ES during optimization. We use the meshes displayed in
Figure 3.2 as initial guesses for the minimization. The convergence of the Teaser geometry is
slower due to the high complexity.
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M

Figure 3.11: Non-trivial isometric deformations of a minimal surface. The edges of the dual
surface are rotated to create a 1-parameter family of isometrically deformed surfaces with period
2π. The histogram shows the edge length error of the 90◦ model when compared with the initial
surface. The mean edge length deviation of this model is 1.28%.

such that opposite sides of the quads have the same sign and consecutive edges in a quad have
different signs. The dual mesh of a mesh M will have parallel edges calculated as follows: Let
ei j = v j − vi be an edge vector of M. Then the dual edge vector e∗i j is defined as

e∗i j = ±
1

ri · r j
ei j

where ri and r j are the distances from the vertex vi and v j to the touching point of the incircles
of incident faces at the edge ei j. For a given discrete s-isothermic mesh we can easily calculate
the dual mesh by enumerating the vertices along a spanning tree of edges. In Figure 3.11 the
dual surface of the Minimalmodel is shown in the upper left hand corner. Via the dual surface
we can now construct isometric deformations of minimal surfaces.

Deformation. The dual of a smooth minimal surface coincides with its Gauß map which is
a part of a sphere. This sphere may be multiply covered. For discrete s-isothermic minimal
surfaces this Gauß map is a part of a Koebe polyhedron, i.e., a polyhedral surfaces with edges
tangent to a sphere. On the Koebe polyhedron every edge is rotated by a fixed angle in the
tangent space of the sphere at the points of tangency of the edge. The resulting edge vectors
again form closed quads and can be dualized. This dual surface has the same edge lengths as
the initial minimal surface.

For minimal quad meshes with touching incircles that were created using our parameterization
and the optimization step, the dual surface will be close to a Koebe polyhedron. We use a
least-squares-sphere to define a consistent tangent space at the touching points of incircles with
the edges. The resulting deformation of a given minimal surface is then close to isometric. To
distribute the isometry error on the edges we average over different roots of the layout spanning
tree. Surfaces that do not possess exact isometric deformations are deformed approximative.

We apply this procedure to the Minimal model (Figure 3.2a). Figure 3.11 shows the surface
together with its dual and isometrically deformed versions with different turning angles.
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Figure 3.12: Discrete s-isothermic ellipsoid

3.6 A discrete s-isothermic ellipsoid and its dual surface

Here we describe the construction of a discrete s-isothermic ellipsoid and its dual surface. (See
Hertrich-Jeromin [32, p. 202] for the smooth analog). The rough construction outline is as follows.
We start with a discretized version of the smooth isothermically parameterized ellipsoid. We
obtain this by calculating a quasiisothermic parameterization of half of a triangulated ellipsoid.
After remeshing, the parameter lines are approximate curvature lines. We complete the surface
by reflection at the boundary. Optimization of the s-isothermic functional yields the final discrete
ellipsoid. Its dual surface is constructed as in Section 3.5.

The connectivity at singularities of the discrete ellipsoid is not unique. If there is a discrete
curvature line in the symmetry plane of the ellipsoid, we have degenerate quads that have
vertices with angle ≈ π. The singularity is located at this valence 2 vertex. If there is no discrete
curvature line at the symmetry plane then the singularity is located at the mid point of the edge
connecting two valence three vertices. We have observed that the convergence behavior of the
s-isothermic functional is considerable better in the former model of singularities. We therefore
like to call only the discrete ellipsoid with curvature lines at symmetry planes a discrete ellipsoid,
see Figure 3.12 and 3.13.

3.7 Conclusions and future research

The main contributions of this article are, on the one hand, the definition of quasiisothermic
parameterizations together with a new algorithm to compute parameterizations of surfaces that
optimizes the corresponding quality measure. On the other hand, we have defined a new energy
for meshes with touching incircles.

We see the main advantage of the algorithm presented in Section 3.3 in its simplicity and
its applicability to shell-like roof structures which arise in architectural models. Since these
models often have almost constant mean curvature and thus allow for an almost isothermic
parameterization, our algorithm performs particularly well on these examples.

The new energy described in Section 3.5 is closely related to the work of Schiftner et al. [58]
dealing with circle packing meshes. They explicitly do not treat quadrilateral meshes since
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Figure 3.13: Dual surface of discrete s-isothermic ellipsoid of Figure 3.12.

they are aware of the shape restrictions and focus on triangle meshes instead. The shape
restriction lies in the core of isothermic surfaces but did not influence our results dramatically
for the surfaces in our focus. How to approximate arbitrary surfaces by isothermic surfaces
is unknown and will be subject to future research. The results of Section 3.5 suggest that this
might be possible using related methods.

Our new functional generates quad circle packing meshes in the sense of Schiftner and co-
authors. For surfaces arising in architectural context (in particular for shell-like roofs) we are
able to construct aesthetically pleasing quad meshes supporting a circle packing.
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Chapter 4

Optimization of Regular and
Irregular Elastic Gridshells

This publication is joint work with Elisa Lafuente Hernández, Thilo Rörig, and Christoph
Gengnagel and was previously published in the proceedings of the conference "Advances in
Architectural Geometry 2012" [41] under the title Topology optimisation of Regular and Irregular
Elastic Gridshells by means of a Non-linear Variational Method.

Gridshells composed of elastically-bent profiles offer significant cost and time advantages during
the production, transport, and construction processes. Nevertheless, the shaping of the initially
flat grid imposes significant bending stresses on the structure, thus reducing the bearing capacity
against external loads. An optimization of the grid’s geometry in order to minimize the curvature
of the profiles and, with it, the initial stresses is therefore crucial. In this work a non-linear
variational method for optimizing the geometry of elastic gridshells with regular and irregular
meshes is presented. Different case studies of doubly-curved gridshells show the advantages
and capacity of this method.

4.1 Introduction

Elastic gridshells make use of the principle of active bending [5], since their final geometry results
from the elastic deformation of initially flat grids. This construction principle has the advantage
of reducing costs and time during the production, transport, and construction. Nevertheless,
the shaping of the profiles induces significant stresses on the grid, thus reducing the bearing
capacity against external loads.

In order to diminish the initial stresses, profiles with low sections and materials with low
modulus of elasticity are usually chosen. However, this leads to a reduction of the global
stiffness of the gridshell that can result in stability problems. With an optimization of the
geometry (orientation and arrangement of the grid profiles), a minimization of the profile’s
curvature can be obtained and the load-bearing capacity of the gridshells can be improved [40].

In 2009, M. Kuijvenhoven proposed a design methodology for elastic gridshells based on
particle-spring models [39]. In this method, the gridshell geometry results from an iterative
process, where the initially flat grid is progressively approached, vertically, towards the refer-

95
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ence surface by shaping springs until achieving the maximum allowable curvature on the grid.
Material and sectional properties of the grid profiles are given as input information. Dynamic
relaxation is used here to calculate the equilibrium of forces on the grids.

Bouhaya et al. [18], Laboratoire Navier of the Paris-Est University, present an optimiza-
tion method based on the geometric compass method described by Frei Otto’s Institute for
Lightweight Surface Structures [53], combined with genetic algorithms. This method consists
of mapping grids, differing in the orientation and angle between the crossing profiles, on an
imposed surface as in the compass method and selecting the one with lowest curvature using
stochastic genetic algorithms.

In this work, a non-linear variational method for optimizing topologies of regular and irregular
elastic gridshells is proposed. The optimization parameters mesh size, reference surface, and
profiles curvature are defined as penalizing energies (the difference to the desired values will be
considered) with corresponding weighting factors. The resulting grid definition is calculated by
minimizing the linear combination of these three energies. In the context of discrete differential
geometry, a mesh with constant edge lengths is called a discrete Chebyshev net. So we aim for
meshes with the Chebyshev property that approximate a given surface with low curvature in
the parameter curves.

The advantage of this method is that the grid is not required to stay on the reference surface and
displacements of the grid nodes are possible in all directions, so that a further optimization of
the grid can be achieved. Moreover, different grid configurations can be calculated by defining
priorities between the optimization parameters. For example, a higher reduction of the profile’s
curvature can be achieved by tolerating a larger distance from the reference surface or variation
on the mesh size (irregular meshes). Several double-curved surfaces with regular and irregular
meshes have been optimized with the variational method and the results are presented in the
following sections.

4.2 Optimization

Let M = (V,E,F) be a quad-mesh. The vertices of M are denoted by vi ∈ V, the edges are eij ∈ E,
and the quadrilaterals are denoted by fijkm ∈ F.

4.2.1 Energies

We use a linear combination of energies to enforce desired properties on the optimized mesh.
Our energy consists of three parts.

E(M) = λ1Eref + λ2Elen + λ3Ecur (4.1)

The energy Eref penalizes the distance of vertices from a reference surface. This surface can
be anything that gives a distance function, e.g., a triangulated surface or a nurbs-surface. The
energy and its gradient are given by

Eref(M) =

vi∈V


vi − cpi, vi − cpi


∂Eref

∂vi
= 2


vi − cpi
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Figure 4.1: Different initialization shear angles for a conformal re-mesh. 30◦ left, 0◦ middle, and
−30◦ right.

Here vi is a vertex of the optimized quad-mesh and cpi a closest point on the reference surface
measured from vertex vi. The functional Elen measures edge length deviation from a given
reference length L. Its derivative and energy is given as

Elen(M) =

eij∈E


∥vi − v j∥ − L

2

∂Elen

∂vi
=


eij∈star(vi)


2 −

2L
∥vi − vk∥


(vi − vk)

The sum in the derivative is taken over all edges incident to vertex vi, called the edge-star of
vertex vi. The third energy is a fairing term that penalizes a notion of curvature of curves on
the surface. As we only deal with quad-meshes withZ2 combinatorics every interior vertex has
four adjacent edges. The energy Ecur and its gradient is defined as:

Ecur(M) =

vi∈V

(π − ∠(ei1, ei3))2 + (π − ∠(ei2, ei4))2

∂
∂v j
∠(eij, eik) =

−1eij


eik − eij


eik, eij


eij, eij

 
eik − eij


eik, eij


eij, eij

 
−1

∂
∂vi
∠(eij, eik) = −


∂
∂v j
∠(eij, eik) +

∂
∂vk
∠(eij, eik)


Here and ei1, ei2, ei3, and ei4 are the adjacent edges of vi in cyclic order. An edge eij is also used
in the role of a vector pointing from vertex vi to vertex v j. ∠(eij, eik) is the angle spanned by the
vectors eij and eik From the angle derivatives with respect to the vertices the gradient can be
computed efficiently.

4.2.2 Initialization and parameters

The energy E(M) is in general non-convex. That means there can be many local optima, and
the solution found by some gradient descent depends on the initialization. We propose to
use a conformal re-mesh of the reference surface as initialization. The conformality of the
parameterization gives us control over the angles between edges of the quadrilaterals. We can
introduce shear to the parameterization and modify this angle globally. By this we start with
meshes that have almost constant edge angle, see Figure 4.1.



98 CHAPTER 4. OPTIMIZATION OF REGULAR AND IRREGULAR ELASTIC GRIDSHELLS

Figure 4.2: Explicitly parameterized spheres with equal edges length l = 0.11. The parameter k
is equal to 0.4 (left), 0.8 (middle), and 0.99 (right).

4.2.3 Implementation

We use the conformal mapping algorithm by Springborn et al. [69] to create the initial mesh. To
minimize the energy E(M) we use the non-linear optimization package PETSc/TAO [7, 8] and
its java binding [68]. We have made good experiences with normalizing the energies to have
gradient length one before optimization. Then we start with all λs equal to one and modify
them on the way if needed. If one encounters degenerate configurations during optimization
one can drop the length energy term for a few iterations.

4.3 Case studies regular gridshells

4.3.1 The sphere

A simple test of our method is the meshing of a part of a sphere. We will compare our results with
a reference mesh that we obtain from a special smooth parameterization of the sphere. Namely
there is a smooth parameterization of the sphere that has the property that the lengths of partial
derivatives are constant throughout the surface. That means that for small discretization steps
we can produce meshes with equal edge lengths from such a parameterization. The formula for
this unit sphere can be found in the work of Voss [72]:

x(u, v) = sn(u + v, k) · cos(k · (u − v))
y(u, v) = sn(u + v, k) · sin(k · (u − v))
z(u, v) = cn(u + v, k).

Here sn and cn are the Jacobi elliptic functions with modulus k. For different k ∈]0, 1[ we get
spheres with equal edges lengths and different shapes of parameter curves (see Fig. 4.2).

We measure qualitative curvature of these curves like in our energy Ecur as (π − ∠(e, ẽ))2. Where
e and ẽ are opposite edges at a vertex of the quad mesh. The curvature mean of the parameter
curves is decreasing for k approaching zero, see Figure 4.3. Using our optimization scheme
from the previous section we can reproduce the mesh shapes obtained for different k. The initial
mesh is here a sheared conformal re-mesh of a part of the unit sphere, see Figure 4.4. As the
sphere suggests there might be solutions with low curvature in the parameter curves that are
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Figure 4.3: The mean value of (π − ∠(e, ẽ))2 (blue) on parameter curves of the explicit sphere
parameterization is plotted against the parameter k. The green curve indicates the number of
edges in the corresponding mesh.

Figure 4.4: Initialization meshes (top) and optimized geometries (bottom). The obtained ge-
ometry depends on the initial shear angle and on the boundary shape of the mesh. This leads
to geometries that correspond visually to k ≈ 0.4 (Fig. 4.2 left), k ≈ 0.9 (Fig. 4.2 middle). For
an orthogonal init mesh we obtain a solution that is not contained in the family of smooth
parameterizations defined by Voss [72]. The edge lengths are constant and equal to 0.11 in all
solutions.
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Figure 4.5: Comparison between grid topologies for an anticlastic gridshell. The grid topology
resulting from the compass method presents extreme curvature values (large red nodes) on the
corners of the lateral edges. The configuration obtained with the variational method shows a
more homogeneous curvature distribution and lower curvature values (smaller nodes).

not of use. In our case two angles of the quadrilaterals tend to zero with decreasing curvature.
At the same time the number of edges needed for the mesh is increasing. The shear angle of the
start mesh gives the family of parameterizations for the sphere and one can easily obtain a good
trade-off between number of edges and curvature of the parameter curves.

4.3.2 Comparison with the compass method

Three double-curved gridshells with different types of curvature (anticlastic, synclastic and a
combination of both) have been analyzed with the variational method and the results compared
with the grid definitions obtained with the classic compass method. The anticlastic gridshell is
between 5 and 7.5m high, 14 and 15m wide and 30m long. The synclastic gridshell is between
7.5 and 10m high, 14 and 15m wide and 30m long. Finally, the gridshell with anticlastic and
synclastic curvatures, analogue to the Downland Museum gridshell in Sussex, Great Britain
(2002), has a height between 7.35 and 9.50m, a width between 12.5 and 16m and a length of 50m.

The mesh size of all three grids is 1m and the starting angle between crossing directions in the
centre of the gridshells is 90◦. In the compass method, the starting angle corresponds to the
angle between the initial curved axes [53], and in the variational method to the angle between
crossing segments. A high weighting factor of the Eref energy has been chosen so that a distance
from the reference surface lower than 1/500 of the span length can be maintained.

In the following pictures the grid topologies resulting from both methods are shown and com-
pared for the three gridshell structures. The curvatures of the profiles have been calculated as
the reciprocal of the radius of the circles defined by three consecutive grid nodes. The curvature
distributions, calculated by the variational method in terms of Ecur, have been also illustrated
through colored points. The size of the points is proportional to the curvature. The maximum
and minimum curvatures correspond to the red and blue colors, respectively.

On the case of the anticlastic gridshell, see Figure 4.5, the main difference between the grid
topologies is located on the corners of the lateral edges. There, the topology resulting from the
variational method tends to go more transversally to the front sides. Also there, the critical
curvature of the grid given by the compass method is to be found. The variational method
provided a grid topology with a more homogeneous curvature distribution and a maximum
curvature value reduced to 87%.

On the case of the synclastic gridshell, see Figure 4.6, slight differences can be found on the whole
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Figure 4.6: Comparison between grid topologies for a synclastic gridshell. The grid topology
resulting from the compass method presents again extreme curvature values (large red nodes)
on the corners of the lateral edges. The configuration obtained with the variational method
owns lower maximum and mean curvature values.

lateral sides between the grid topologies obtained with both methods. The grid configuration
given by the compass method presents extreme curvature values on the corners of the lateral
edges and on the gridshell crown. The variational method provided a grid configuration with
lower curvature values on the top and higher on the bottom of the gridshell, the maximum
profiles curvature could be reduced to 90% compared to the compass method.

On the case of the gridshell analogue to the Downland Museum, see Figure 4.7, differences
between the grid topologies increase when approaching to the face sides. In both methods,
higher curvature values are to be found on the crowns and lower on the valleys. By the grid
resulting from the variational method, extreme curvature values are less concentrated as in the
compass method configuration. The maximum profiles curvature could be minimized to 88%.

With the variational method, grid topologies with lower and more homogeneously distributed
profiles curvatures than by the compass method could be obtained. A further optimization
could be achieved by using another starting mesh with different edge angles, by tolerating a
higher distance from the reference surface or by allowing variation on the segment lengths. In
the following chapters the weighting factors of the it reference surface and it segments length
energies have been minimized in order to achieve a higher reduction of the grid curvature.

4.3.3 Further optimization by allowing more distance to reference surface

The anticlastic, synclastic and Downland-like gridshells have been further optimized by reduc-
ing the weighting factor of the reference surface energy and with it allowing a spacing between
grid and target surface up to 0.6 m. Depending on the curvature distribution, the grids have
been deformed above or below the reference surface.

On the case of the anticlastic gridshell, the corners of the lateral sides deform outside reducing
here the maximum curvature values up to 45% and obtaining a more homogeneous distribution
on the centre of the gridshell. The mean curvature of the profiles could be reduced up to 51%.
By the synclastic gridshell, the lateral edges tend to distort outwards in the middle and the
crown of the grid slightly upwards. The maximum and mean profiles curvatures were reduced
up to 79% and 78%, respectively. By the gridshell with anticlastic and synclastic curvatures,
the crowns deform inwards and the valleys outwards getting a flatter surface. The maximum
and mean curvatures of the profiles could be reduced here up to 76% and 64%, respectively, see
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Figure 4.7: Comparison between grid topologies for the Downland-like gridshell. In both
methods, higher curvature values are located on the crowns (red nodes) and lower on the
valleys (blue nodes). With the variational method, a higher distribution of the extreme profiles
curvatures could be obtained.

Figure 4.8: Deformation of the grids by allowing more distance from the reference surface
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Figure 4.8).

The diagram shown in Figure 4.9 outlines the optimization results achieved with the variational
method in comparison to the compass method. The maximum and mean curvatures are illus-
trated for the three gridshells. The color of the bars represents the distance from the reference
surface. Generally, a higher reduction of the mean curvature is achieved, as the energy Ecur to
be minimized corresponds to the sum of all curvature values.

4.4 Case studies irregular gridshells

4.4.1 Further optimization allowing variation on the segment lengths

A further optimization can also be achieved by allowing the distance between grid nodes to
vary, reducing thus the curvature on the grid locally and globally. A spherical calotte of 15m
diameter and 10m height has been firstly optimized, with constant segment length (regular
gridshell) and a starting angle between profiles of 67.5◦, and afterwards by letting the segment
lengths progressively differ (irregular gridshell).

On the case of the calotte with regular mesh, due to the characteristic polar singularities of the
spheres, strong local concentrations of curvature can be observed. By letting the mesh size vary,
the segment lengths become shorter on the poles and the also typical alignment in S of the grid
tends to disappear, see Figure 4.10.

4.4.2 Practical application: The Flying Dome

Elastic gridshells offer great advantages on temporary structures since the initially straight and
afterwards elastically shaped profiles composing the grid allow rapid and cost-efficient pro-
duction, transport and erection processes. For a temporary hanging 3D Projection Hemisphere
(Flying Dome) of 10m diameter, an irregular elastic gridshell has been designed, see Figure 4.11.
The project is a cooperation between the UdK Berlin, the TU Berlin, the Fraunhofer Institut
FIRST and industrial partners and is planned to be built in Berlin in October 2012.

The structure consists in a hybrid construction composed of an irregular elastic gridshell between
a double-layer membrane stabilized by underpressure (vacuum) of 0.08mbar. The profiles of the
gridshell are made of GFK and have a tubular section of 20mm diameter and 3mm thickness.A
third layer of profiles assures the bracing of the grid and activates its shear-bearing capacity.
A PVC-coated polyester fabric and a PVC projection foil have been planned for the outer and
inner membranes, respectively. The extremities of the bent profiles are fixed on a steel box ring
of 100x100x4mm. The hemisphere hangs from the roof through four cables of 6mm diameter
and is horizontally stabilized by other four cables of 3mm diameter. The total weight of the
structure is approximately 1.3 tons.

An irregular mesh was chosen in order to minimize the profiles curvature (the maximum
curvature could be reduced up to 80% compared to the regular gridshell) and to obtain a more
interesting arrangement of the grid pattern. Physical modeling was used to analyze the visual
effects, see Figure 4.12.

Contrary to regular grids, grids with irregular meshes cannot be completely deployed and can
only be partially pre-assembled. The two profile layers will be joined and bent in a progressive
process in order not to exceed the maximum allowable curvature during the erection of the
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Figure 4.9: Comparison of the maximum and mean profile curvatures of the anticlastic, synclastic
and Downland-like grid topologies resulting from the variational and compass methods
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Figure 4.10: optimization of a spherical calotte with regular and irregular meshes. With a
maximum variation of the segment length of 0.40m (middle) and 0.50m (bottom), the mean
curvature of the grid could be reduced up to 83% and 77% respectively.
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Figure 4.11: Front view and renderings of the Flying Dome

Figure 4.12: Physical modeling of the Flying Dome to analyze the visual effects of the irregular
mesh
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Figure 4.13: Simulation of the erection process and loading of the Flying Dome and analysis of
the maximum stresses by means of FEA

structure. By means of finite element analysis, the assembling process of the hemisphere has
been simulated and the maximum stresses during the shaping of the grid and by underpressure
loading have been controlled, see Figure 4.13.

4.5 Conclusion

A non-linear variational method for optimizing topologies of regular and irregular elastic grid-
shells is presented in this paper. The design parameters mesh size, reference surface and profiles
curvature are defined as penalizing energies with corresponding weighting factors. The resulting
grid configuration is calculated by a non-linear algorithm by minimizing the linear combination
of these three energies. The advantage of the variational method compared to other existing
ones is that spacing between grid and target surface can be allowed and displacements of the
grid nodes are possible in all directions, thus a further optimization of the grid topology can
be achieved. Moreover, by defining different priorities between the design parameters through
the energy weighting factors, diverse grid configurations can be generated and the resulting
gridshell design can be adapted to specific structural and architectural requirements.



108CHAPTER 4. OPTIMIZATION OF REGULAR AND IRREGULAR ELASTIC GRIDSHELLS



Part III

Implementation

109





Chapter 5

Introduction

In all chapters of Part III, words printed in SmallCapitals are names of software packages;
words printed in TeleType are names of Java classes, methods, or fields.

Figure 5.1: Software architecture and dependencies of the DDG Framework. Jtem library
packages (green), application packages (blue). JReality is used mainly for 3d-visualization
(grey).

In the field of Discrete Differential Geometry (DDG) there is a special need for experiments with
the help of computer software. Especially if the methods of DDG are applied to problems in
computer graphics, geometry processing, or architecture, algorithms have to be implemented
and convincing examples have to be presented. Additionally, a suitable visualization of the
results has to be included in a state-of-the-art publication.

There is a growing knowledge of software development in the mathematical community. This
is partly due to the curricula of universities, which started to include programming courses
for undergraduate students with an emphasis on mathematical visualization [26, 21]. This
knowledge enables students to extend their abilities of creating visualizations and mathematical
software, where former generations of students solely used the visualization abilities of standard
computer algebra packages like Mathematica or MatLab.
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The audience of the following chapters is two-fold. On the one hand it is students creating
visualizations of surfaces and developing algorithms. On the other hand it is researchers in the
field of DDG who need a stable data structure and programming infrastructure for their work.

This part of the thesis is the description of a set of software packages written in the programming
language Java. They are specifically designed for the creation of custom interactive software for
experiments with algorithms and geometric objects treated within DDG. Its main components
JRworkspace, HalfEdge, and HalfEdgeTools are part of the collection of mathematical software
libraries Jtem [34]. They are currently being used for research projects within the geometry group
as well as for teaching mathematical visualization courses at TU-Berlin [26]. Representing the
core of VaryLab, they are being deployed to users from the field of architectural geometry via
the online version of VaryLab [63].

Chapter 6 introduces the JRworkspace library of the Jtem project [34]. It is the foundation of
any application created with the framework. It is also the user interface basis of Jreality, a
mathematical visualization library that uses JRworkspace as plug-in and user interface tool [20].
Chapter 7 introduces the HalfEdge and HalfEdgeTools package. They implement a half-edge
data structure and various user interface tools and algorithms for interaction and editing. In
Chapter 8 we describe the software ConformalLab. This implements the algorithms described
in Chapter 1. Chapter 9 introduces VaryLab, the software implementation of the methods
described in Chapters 2, 3, and 4. The chapters about ConformalLab and VaryLab should
enable the reader to use the software to reproduce the results presented in the respective chapters
of this work.

Figure 5.1 visualizes the dependencies of the different software packages. Every package de-
pends on the plug-in functionality implemented in JRworkspace. It is the basis of the Jreality
plug-in system. HalfEdgeTools uses Jreality for visualization and is built on top of the Jtem
project HalfEdge. ConformalLab and VaryLab use Jpetsc/Jtao to perform numerical optimiza-
tion. Their algorithms are implemented as JRworkspace plug-ins.

The development of the described software is joint work with Thilo Rörig (HalfEdgeTools,
VaryLab), the Jreality members [20], Hannes Sommer (Jpetsc/Jtao) [68], Ulrich Pinkall and
Paul Peters (JRworkspace), and Boris Springborn (Halfedge).



Chapter 6

JRworkspace - Java API for modular
applications

JRworkspace is part of the Jtem family of software projects [34]. It defines a simple API to
create modular Java applications. This API consists of three basic classes (Listings 6.2, 6.3,
and 6.4). The project contains a reference implementation that supports the creation of Java
Swing applications using the JRworkspace API. This implementation is used in all applications
described in this work.

6.1 Plug-ins and the controller

In a JRworkspace application a feature is implemented as a plug-in and the corresponding Java
class extends the abstract class Plugin (Listing 6.2). The idea is that a plug-in can be installed
by the controller calling its installmethod or uninstalled via the uninstallmethod. It can be
thought of as a feature added to the program. In particular, there is no more than one instance
of a plug-in class in a JRworkspace application.

A plug-in has a life-cycle during the runtime of the program that includes these basic steps:

instantiation 1 set default plug-in state
restoreStates 2 load plug-in state from Controller

install 3 calls getPlugin to obtain dependent plug-ins
– 4 program execution

storeStates 5 stores state values to the Controller
(uninstall 6 clean up)

Step 1 instantiates a plugin and initializes its default properties. In step 2 the controller calls the
restoreStates method. Step 3 is the actual installation of the plug-in. During runtime of the
application the plug-in can interact with a potential user interface created during installation or
offer services to other plug-ins. Before program termination or before uninstall, the storeStates
method is called. The plug-in is supposed to store its state values by calling the storeProperty
method of the controller. Inter-plug-in-communication is done via the getPlugin method of
the controller. A plug-in should call getPlugin from within the install method to obtain
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the unique instance of a dependent plug-in. The getPlugin method always returns the same
instance of a plug-in so its result can be stored by the install method for later reference, see
for example Listing 6.1. Step 6 uninstall is only used with dynamic plug-ins that support this
operation. An implementation of Controllermay not support uninstallation of plug-ins.

We describe the basic API usage from a programmer’s point of view by giving an example
plug-in in Listing 6.1 and the source code of the three basic API classes Plugin, Controller,
and PluginInfo in Listings 6.2, 6.3, and 6.4.

1 public class MyPlugin extends Plugin {
2 private DependentPlugin dependency = null;
3 private double doubleState = 0.0;

5 public void helloPlugin() {
6 String depName = dependency.getPluginInfo().name;
7 System.out.println("I am a plug-in. I depend on " + depName);
8 }
9 @Override

10 public void storeStates(Controller c) throws Exception {
11 c.storeProperty(MyPlugin.class, "doubleState", doubleState);
12 }
13 @Override
14 public void restoreStates(Controller c) throws Exception {
15 doubleState = c.getProperty(MyPlugin.class, "doubleState", 1.0);
16 }
17 @Override
18 public void install(Controller c) throws Exception {
19 dependency = c.getPlugin(DependentPlugin.class);
20 }
21 }

Listing 6.1 A simple plug-in class. It depends on a plug-in called DependentPlugin and has
the property doubleState. It provides the method helloPlugin() that prints some message.
In the storeStatesmethod the value of doubleState is written to the controller. The class
MyPlugin is used as context class. The name of this class is used as a namespace to avoid
property name ambiguities. The value of doubleState is read from the controller in the
restoreStatesmethod using the same context class and property name as in storeStates.
If there is no value with the given context and name, the default value 1.0 is returned by
the getPropertymethod.

1 public abstract class Plugin {

3 public PluginInfo getPluginInfo() {
4 return PluginInfo.create(getClass());
5 }

7 public void install(Controller c) throws Exception{}
8 public void uninstall(Controller c) throws Exception {}
9 public void restoreStates(Controller c) throws Exception {}

10 public void storeStates(Controller c) throws Exception {}

12 @Override
13 public String toString() {
14 if (getPluginInfo().name == null) {
15 return "No Name";
16 } else {
17 return getPluginInfo().name;
18 }
19 }
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21 @Override
22 public boolean equals(Object obj) {
23 if (obj == null) {
24 return false;
25 } else {
26 return getClass().equals(obj.getClass());
27 }
28 }

Listing 6.2 The Plugin base class (excerpt). Note that plug-ins are equal if their classes are.
It is not supported to have multiple instances of the same plug-in class installed.

1 public interface Controller {

3 public <T extends Plugin> T getPlugin(Class<T> clazz);
4 public <T> List<T> getPlugins(Class<T> pClass);
5 public Object storeProperty(Class<?> context, String key, Object property);
6 public <T> T getProperty(Class<?> context, String key, T defaultValue);
7 public <T> T deleteProperty(Class<?> context, String key);
8 public boolean isActive(Plugin p);

10 }

Listing 6.3 The Controller interface. A plug-in can obtain other plug-in instances by calling
getPlugin, which returns the unique instance of the given plug-in class. The semantics of
the getPlugins methods is different. It returns all plug-ins that are already known to the
controller so no new dependencies are created by calling getPlugins. Property handling is
done via the xxPropertymethods. Note that any Object can be used as property value. This
requires the controller to use generic serialization to store data. It is strongly discouraged to
use other classes than official java API classes as stored values, as deserialization may fail if
the class geometry changes.

1 public class PluginInfo {

3 public String name = "unnamed";
4 public String vendorName = "unknown";
5 public String email = "unknown";
6 public Icon icon = null;
7 public URL documentationURL = null;
8 public boolean isDynamic = true;

10 public PluginInfo() {
11 }

13 public PluginInfo(String name) {
14 this.name = name;
15 }

17 public PluginInfo(String name, String vendor) {
18 this(name);
19 this.vendorName = vendor;
20 }

22 public static PluginInfo create(Class<?> pluginClass) {
23 PluginInfo pi;
24 if (pluginClass == null) {
25 pi = new PluginInfo();
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26 } else {
27 pi = new PluginInfo(pluginClass.getSimpleName());
28 }
29 if (pluginClass != null && pluginClass.getPackage() != null) {
30 pi.vendorName = pluginClass.getPackage().getImplementationVendor();
31 }
32 return pi;
33 }

35 }

Listing 6.4 The plug-in meta data class (excerpt). Instances are returned by the
getPluginInfo method of any plug-in. The value of the name field is a plaintext name
that could be shown in a user interface, as well as the vendorName and email information.
An optional icon and a documentationURL can be given. The flag isDynamic is evaluated
by controller implementations that support deinstallation of plug-ins. A dynamic plug-in
can be installed or uninstalled during application runtime. A non-dynamic plug-in must
be installed at startup and remains installed until program termination. The static create
method returns a default PluginInfo instance for the given plug-in class.

6.2 Reference implementation

This section describes a reference implementation of the JRworkspace plug-in API. It was started
as a user interface framework for Jreality [20]. It implements the Controller interface in a class
called SimpleController. This name is historic and did not change as the features evolved from
simple into quite complex. SimpleController implements a Java Swing R⃝ framework for the
creation of complex modular applications based on the JRworkspaceAPI. It defines various plug-
in flavors that define user interface features. The implementation does not support dynamic
plug-ins.

In the remainder of this section we describe the basic and most interesting features of this
implementation. For a complete API reference see the documentation on the Jtemwebsite [34].

Perspective Flavor

A plug-in implementing the interface PerspectiveFlavor provides the base for a program’s
user interface. It implements the method getCenterComponent that returns an AWT Component
that is placed in the main frame of the application. The main program window itself is
created and managed by the controller. A reference implementation of this flavor is the
SideContainerPerspective. It layouts its content using a BorderLayout and places slots in
the north, south, east, and west of the main window. These slots can contain ShrinkPanels that
can be moved between slots by drag-and-drop. A ShrinkPanel behaves like a JPanel and has
a title bar that resizes the panel when the user clicks with the mouse.
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Figure 6.1: The SideContainerPerspective implementation uses slots to layout panels at the
side of the main window. The left slot contains three ShrinkPanels, the top and right slots are
empty. The menu bar and tool bar are created by respective plug-in flavors.

Menu Flavor

A plug-in implementing the MenuFlavor interface provides Java Swing R⃝ menu components that
are placed at the top of the main window. A reference implementation of this flavor is the plug-in
MenuAggregator that manages menu entries by contexts and menu paths. Its API provides four
methods to add and remove menus, menu items, and separators. A typical method signature is

public void addMenu(Class<?> ctx, double priority , JMenu m, String... path)

where the plug-in stores the menu item with the given context class. This context is used to
bulk-remove menus from a menu aggregator. Menus are sorted ascending by their priority. The
menu item appears at the end of the given menu path. See Listing 6.5 and Figure 6.2.

Figure 6.2: The menu created by Listing 6.5

2 @Override
3 public void install(Controller c) throws Exception {
4 super.install(c);
5 addMenu(MyMenuBar.class, 0.0, new JMenu("File"));
6 addMenu(MyMenuBar.class, 1.0, new JMenu("Menu 2"));
7 addMenuItem(MyMenuBar.class, 0.0, new QuitAction(), "File");
8 addMenuItem(MyMenuBar.class, 0.0, new JCheckBoxMenuItem("Test Checker"), "

Menu 2");
9 addMenuItem(MyMenuBar.class, 0.0, new JRadioButtonMenuItem("Test Radio"), "

Menu 3", "Sub Menu");
10 addMenuItem(MyMenuBar.class, 0.0, new JMenuItem("Test Item"), "Menu 3");
11 addMenuSeparator(MyMenuBar.class, 1.0, "Menu 3");
12 }

Listing 6.5 Usage of the MenuFlavor interface and the MenuAggregator implementation.



118 CHAPTER 6. JRWORKSPACE - JAVA API FOR MODULAR APPLICATIONS

Tool Bar Flavor

Plug-ins implementing this flavor interface create a Java Swing R⃝ tool bar at the top of the main
window. There can be more than one plug-in implementing this interface to create multiple tool
bars. The API method signatures are similar to the signatures of the menu aggregator flavor. As
a tool bar does not have a hierarchy, there is no path parameter. The signature of an API method
is, e.g.,

public void addAction(Class<?> context, double priority , Action a).

The tool bar aggregator implementation can handle Actions, Components, and tool bar separa-
tors. See Listing 6.6 and Figure 6.3.

Figure 6.3: The tool bar created by Listing 6.6. Elements are sorted according to their priority.

2 @Override
3 public void install(Controller c) throws Exception {
4 addAction(MyToolBar.class, 0.0, new MyAction());
5 addTool(MyToolBar.class, 2.0, new JButton("Button"));
6 addSeparator(MyToolBar.class, 1.0);
7 addTool(MyToolBar.class, 3.0, new JCheckBox("Checker"));
8 addTool(MyToolBar.class, 4.0, new JComboBox <Object >(testItems));
9 addTool(MyToolBar.class, 5.0, new JButton("Button2"));

10 super.install(c);
11 }

Listing 6.6 Usage of the ToolFlavor interface and the ToolBarAggregator implementation.

The API of SimpleController

A plug-in implementation is independent of the concrete implementation of the Controller.
To create an application with the SimpleController we need to register plug-ins we want to
use and then invoke the startup sequence. A typical mainmethod is, e.g.,

1 public static void main(String[] args) throws Exception {
2 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
3 SimpleController c = new SimpleController("My Application");
4 c.setManageLookAndFeel(false);
5 c.setPropertiesMode(StaticPropertiesFile);
6 c.setStaticPropertiesFile(new File("MyApp.xml"));
7 c.registerPlugin(MyPerspective.class);
8 c.registerPlugin(MyMenuBar.class);
9 c.registerPlugin(MyToolBar.class);

10 c.registerPlugin(MyShrinkPanel.class);
11 c.registerPlugin(MyShrinkPanel2.class);
12 c.registerPlugin(MyShrinkPanel3.class);
13 c.registerPlugin(MyShrinkPanel4.class);
14 c.startup();
15 }

Listing 6.7 Mainmethod of a program created with the SimpleController implementation.
The result is shown in Figure 6.1.
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Figure 6.4: The Jreality user interface. A SideContainerPerspective with ShrinkPanels is
used. The tool bar and menu bar are created by the aggregators described in Section 6.2. This
application uses a set of predefined user interface features and virtual reality components. In a
custom application the developer usually registers only a subset of these features.

We set the look and feel to be the system look and feel, in this case the Mac OS style. Then
we create a SimpleController and set the magageLookAndFeel property to false. Plug-in
properties are saved to a file called MyApp.xml. There are two property modes defined by the
SimpleController: StaticPropertiesFile and UserPropertiesFile. In static mode, there is
only one file location. In user mode, the predefined location can be altered by the user of the
program. This user decision is then stored as a Java preference. In this example we use the static
properties.

6.3 JRworkspace and Jreality

Jreality [20] is a scene graph and visualization library written in Java. The user interface of
Jreality is based on the JRworkspace API and reference implementation. A custom Jreality
application can be based on the central JRViewer class. This class uses SimpleController
to manage plug-in registration and start-up. The design of the JRViewer application makes
intensive use of the plug-in concept. The architecture of the application is divided into separate
modules, which in turn are realized as plug-ins. The core functionality is provided by plug-ins
implementing the content, the scene, the view, and the tool system. Then there are plug-ins
providing the tool bar and menu bar as well as the overall layout of shrink panels as described
above.
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Chapter 7

The Jtem libraries HalfEdge and
HalfEdgeTools

This chapter describes the Java implementation of a half-edge data structure and a set of tools
combined in the package HalfEdgeTools. Both packages are part of the Jtem project [34]. This
is joint work with Boris Springborn (HalfEdge), Thilo Rörig, Felix Knöppel, and Kristoffer
Josefsson (HalfEdgeTools), and other contributers to the Jtem project.

This implementation of a half-edge data structure was inspired by an implementation contained
in the Cgal library [37]. This specific implementation, however, differs from existing libraries,
as it uses the generic programming concept of Java to achieve compatibility and flexibility.

The code presented in this section is compatible with Java version 1.7 or later.

7.1 The HalfEdge data structure

Half-edge data structures are used primarily to represent cell decompositions of oriented sur-
faces. We say "primarily" because half-edge data structures can be used to represent somewhat
more general combinatorial structures, such as, for example, a checker board surface with white
squares removed.

Here, surface means two-dimensional manifold, possibly with boundary; and a cell decompo-
sition of a surface is a graph embedded in the surface such that the complement of the graph
is (topologically) a disjoint union of open disks. The term map on a surface means the same.
Thus, a cell decomposition decomposes a surface into vertices, edges, and faces.

Regular and strongly regular

A cell decomposition of a surface is called regular if it has no loops (edges with the same vertex
on both ends) and if the boundary of a face contains an edge or vertex at most once. It is called
strongly regular if two edges have at most one vertex in common, and if two faces have at most
one edge or one vertex in common. A strongly regular cell decomposition is usually called a
mesh.

This half-edge data structure implementation consists of different types of objects representing
vertices, half-edges, and faces. The term half-edge can and should be thought of as synonymous
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with oriented edge or directed edge.

Every half-edge object holds references to:

• its oppositely-oriented companion edge
• the next edge in the boundary of the face on its left-hand side
• the previous edge in the boundary of the face on its left-hand side
• the face on its left-hand side
• the vertex it points to.

The face and vertex objects hold back references to a half-edge referencing them. Finally, there
is the class de.jtem.halfedge.HalfEdgeDataStructure representing a whole half-edge data
structure. It acts as a container for (and sort of factory of) its vertices, half-edges, and faces.

Use of generics

Typically, one wants to equip vertices, edges, and faces with additional properties or functional-
ity. For example, vertices may have coordinates associated with them, edges may have weights,
and faces may have colors.

Our half-edge data structure facilitates this by using generic classes as abstract base classes for
vertex, edge, and face types: The classes de.jtem.halfedge.Vertex, de.jtem.halfedge.Edge,
de.jtem.halfedge.Face are all parameterized with the associated vertex, edge, and face types.

Example

To create a half-edge data structure with vertices that have 2D coordinates, proceed as follows.

• Step 1. Define appropriate subclasses of de.jtem.halfedge.Vertex, de.jtem.half-
edge.Edge, and de.jtem.halfedge.Face, for example:

public class MyVertex extends Vertex<MyVertex, MyEdge, MyFace> {
public Point2D p;

}
public class MyEdge extends Edge<MyVertex, MyEdge, MyFace> { }
public class MyFace extends Face<MyVertex, MyEdge, MyFace> { }

Of course one might make the property p of MyEdgeprivate and provide getter and setter meth-
ods, etc. Note that one always has to subclass de.jtem.halfedge.Vertex, de.jtem.half-
edge.Edge, and de.jtem.halfedge.Face, even if there is no additional functionality or prop-
erties.

• Step 2. Instantiate a de.jtem.halfedge.HalfEdgeDataStructure:
HalfEdgeDataStructure <MyVertex, MyEdge, MyFace> heds = new HalfEdgeDataStructure

<>(MyVertex.class, MyEdge.class, MyFace.class);

The parameters of the constructor serve as run-time type tokens. Alternatively one can create
a subclass of de.jtem.halfedge.HalfEdgeDataStructure and in turn create an instance of
this:

public class MyHDS extends HalfEdgeDataStructure <MyVertex , MyEdge, MyFace> {
public MyHDS() {

super(MyVertex.class, MyEdge.class, MyFace.class);
}

}
...
MyHDS mds = new MyHDS();

• Step 3. Instantiate vertices, edges, and faces using the addNewVertex, addNewEdge, and
addNewFacemethods, like this:

MyVertex v = heds.addNewVertex();
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MyEdge e = heds.addNewEdge();
MyFace f = heds.addNewFace();

Linkage and incidence.

Node classes provide methods to create a valid data structure. Most of the methods are bidi-
rectional linkage methods that affect the target and the caller. The corresponding methods
are:

• E.linkNextEdge sets the nextEdge property of this edge as well as the previousEdge property
of the given edge.

• E.linkOppositeEdge sets the oppositeEdge property of this edge and of the given edge
accordingly.

• E.linkPreviousEdge sets previousEdge and nextEdge properties of this and the given edge.
• E.setLeftFace sets the leftFace property of this edge and the boundaryEdge property of the

given face.
• E.setTargetVertex sets the targetVertex property of this edge and the incomingEdge prop-

erty of the given vertex.

Node indices.

During algorithm development it is often necessary to access consistent indices on vertices,
half-edges, or faces. We support this operation by the index field of nodes accessible via the
getIndex() method of all node types. Nodes are required to have indices 0, . . . , #V, 0, . . . , #E,
and 0, . . . , #F, respectively. Note that #E is the number of half-edges in the data structure. The
running time of a getIndex operation isO(1) if no remove operation has invalidated the indices.
Otherwise it is O(n) where n is the number of nodes in the data structure, e.g., n = #V.

Iterating and directly accessing nodes.

Nodes can be directly accessed via the corresponding get method. It takes the node index
and returns the node with the given index. It is guaranteed that for a given i ∈ {0, . . . , #N}
it is getNode(i).getIndex()= i. Nodes in the data structure can be iterated over using one
of the methods getVertices, getEdges, or getFaces. These return unmodifiable instances of
java.util.List containing the respective node instances.

Undirected edges

A half-edge has the positive property. In a pair of opposite edges it is required that the
boolean value of this property is different, i.e., e.isPositive() ! = e.getOppositeEdge().
isPositive(). Using this property it is possible to iterate over undirected edges, i.e., the
positive or the negative half-edges. The methods getPositiveEdges and getNegativeEdges of
the data structure implement this.

Removing nodes from a data structure.

A node can be deleted from the data structure using the removeVertex/Edge/Facemethods. The
running time of a remove operation is always O(1). Node indices however will get invalidated
and reindexed on the next access of any index-related operation that in turn will then have
running time O(n).

Half-Edge utilities.

To work efficiently with half-edge data, a set of algorithms is implemented as static utility
methods in the class de.jtem.halfedge.util.HalfEdgeUtils. It contains methods that help
iterating over incoming edges at a vertex, or iterating over the boundary edges of a surface or a
face, and many more.

e.isPositive()
e.getOppositeEdge().isPositive()
e.getOppositeEdge().isPositive()
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7.2 Data, algorithms, and tools

A set of algorithms and tools is implemented in the Jtem project HalfEdgeTools [34].

Many algorithms in the library are purely combinatorial. This means there is no extra data
involved during algorithm execution. Such an algorithm is thus generic by definition. The
method signature could look like this:

1 public static <
2 V extends Vertex<V, E, F>,
3 E extends Edge<V, E, F>,
4 F extends Face<V, E, F>,
5 HDS extends HalfEdgeDataStructure <V, E, F>
6 > void triangulate(HDS hds){
7 ...
8 }

This method works on any half-edge data structure that is either an instance of de.jtem.half-
edge.HalfEdgeDataStructure or an instance of a sub-class. This method signature makes the
algorithm code itself look very clean. For instance iterating over all vertices amounts to:

1 for (V v : hds.getVertices()) {
2 E e = v.getIncomingEdge();
3 ...
4 }

On the other hand, when designing a generic algorithm that needs certain data associated with
nodes, we have basically two options. Option 1 requires the generic node classes to implement
the required interfaces:

1 public static <
2 V extends Vertex<V, E, F> & HasCoordinate3D ,
3 E extends Edge<V, E, F>,
4 F extends Face<V, E, F>,
5 HDS extends HalfEdgeDataStructure <V, E, F>
6 > void convexHull(HDS hds){
7 ...
8 Coordinate3D x = v.getCoordinate3D();
9 }

This forces the Vertex implementations that use this algorithm to implement an interface called
HasCoordinate3D. It leads to explicit and clean code of the algorithm. A drawback of this is
that an existing implementation that should use this algorithm has to be adapted to implement
the potentially many interfaces required by the algorithm. This is not a feasible solution when
is comes to a modular application where algorithms come as plug-ins without the chance to
change the data structure.

AdapterSet and Adapters

The second option uses the concept of adapters and is implemented in the package de.jtem.-
halfedgetools.adapter. An adapter defines a map from nodes to a data type supported by the
adapter. We first show how this concept works when designing algorithms and then describe
the implementation of the required adapters.

In this next example we calculate the discrete Dirichlet energy of a double-valued function with
double-valued weights on edges.

2 public static <
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3 V extends Vertex<V, E, F>,
4 E extends Edge<V, E, F>,
5 F extends Face<V, E, F>,
6 HDS extends HalfEdgeDataStructure <V, E, F>
7 > double computeDirichlet(HDS hds, AdapterSet a){
8 double energy = 0.0;
9 for (E e : hds.getPositiveEdges()) {

10 V s = e.getStartVertex();
11 V t = e.getTargetVertex();
12 double fStart = a.get(FunctionValue.class, s, Double.class);
13 double fTarget = a.get(FunctionValue.class, t, Double.class);
14 double w = a.getDefault(Weight.class, e, 1.0);
15 double d = fStart - fTarget;
16 energy += w * d * d;
17 }
18 return energy;

Listing 7.1 Algorithm that uses data from the AdapterSet. The get method of the
AdapterSet takes the data class type to find a matching adapter (Line 12 and 13). The
corresponding getDefault method takes a default value that is returned if no matching
adapter is found (Line 14). It uses @FunctionValue and @Weight annotated adapters to
acquire the data needed for calculation of the output value.

This method requires the AdapterSet to contain adapters that provide @FunctionValue data on
vertices (Line 12 and 13) and @Weight data on half-edges (Line 14).

The classes FunctionValue and Weight are runtime annotation classes, e.g.,

1 @Retention(RetentionPolicy.RUNTIME)
2 @Target(ElementType.TYPE)
3 public @interface FunctionValue {}

An adapter class annotated with this annotation serves as @FunctionValue data adapter when
called for as in Line 11-13 of Listing 7.1. The meaning of adapter annotations is an agreement
between the algorithm using it and the implementor of the adapter. It is best-practice to
implement the adapters such that they output data that fits their annotation names.

There are three basic classes that could serve as the base class of an adapter:

• Adapter - The abstract base class of all adapters. Should never be subclassed directly.
• AbstractAdapter - An adapter class that knows about the supported data type and imple-

ments all getter and setter methods. Here only the needed methods can be overwritten. Node
type checking is done manually and thus allows for the creation of generic adapters.

• AbstractTypedAdapter - If one knows which half-edge node classes the adapter is supposed
to work with this is the adapter base class one should use. Node type checking and casting is
done in the super class.

An adapter implementation using the AbstractAdapter is for instance:

1 @FunctionValue
2 public class MyAbstractAdapter extends AbstractAdapter <Double> {
3 private Map<Vertex<?, ?, ?>, Double> valueMap = null;

5 public MyAbstractAdapter() {
6 super(Double.class, true, false);
7 }

9 @Override
10 public <
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11 N extends Node<?, ?, ?>
12 > boolean canAccept(Class<N> nodeClass) {
13 return Vertex.class.isAssignableFrom(nodeClass);
14 }

16 @Override
17 public <
18 V extends Vertex<V, E, F>,
19 E extends Edge<V, E, F>,
20 F extends Face<V, E, F>
21 > Double getV(V v, AdapterSet aSet) {
22 return valueMap.get(v);
23 }

25 @Override
26 public <
27 V extends Vertex<V, E, F>,
28 E extends Edge<V, E, F>,
29 F extends Face<V, E, F>
30 > void setV(V v, Double value, AdapterSet aSet) {
31 valueMap.put(v, value);
32 }
33 }

Listing 7.2 Adapter implementation using the AbstractAdapter as base class and a map as
storage concept for Double values on generic vertices. It is annotated with a @FunctionValue
annotation to serve as provider for data in the AdapterSet (Line 1). The super class
AbstractAdapter is parameterized with the data type of the implementation; in this case
Double (Line 2). The super class constructor is invoked with the class object of this type and
flags that tell the adapter if get and/or set operations are permitted (Line 6). The method
canAccept decides whether the adapter can work with the given node class; in this case the
adapter can accept any Vertex object (Line 12). Vertex getter and setter methods are generic
methods (Line 16 to 32).

When writing the adapter for concrete node classes we have a more concise description:

2 @FunctionValue
3 public class MyTypedAdapter extends AbstractTypedAdapter <VV, VE, VF, Double> {
4 public MyTypedAdapter() {
5 super(VV.class, null, null, Double.class, true, true);
6 }

8 @Override
9 public Double getVertexValue(VV v, AdapterSet aSet) {

10 return v.value;
11 }

13 @Override
14 public void setVertexValue(VV v, Double value, AdapterSet aSet) {
15 v.value = value;
16 }
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17 }

Listing 7.3 An adapter using AbstractTypedAdapter as base class. Also annotated with
the @FunctionValue annotation. This super class is parameterized with a set of node class
implementations and the adapter data type. Here the super constructor takes the node class
objects or null if a node type is not supported, the data type class object, and the getter/setter
flags. The vertex getter and setter methods are not generic and the corresponding casting is
done in the super class. Adapters working on edges or faces implement the corresponding
get/setEdgeValue or get/setFaceValuemethods.

Using this concept of typed adapters the usage of an algorithm amounts to the implementation
of required data adapters and the creation of a suitable AdapterSet.

2 public static double calculate() {
3 VHDS hds = new VHDS();
4 HalfEdgeUtils.addDodecahedron(hds);
5 AdapterSet a = new AdapterSet();
6 a.add(new MyTypedAdapter());
7 return computeDirichlet(hds, a);
8 }

Listing 7.4 Usage example of the algorithm presented in Listing 7.1. In this example an empty
data structure is created, filled with dodecahedron combinatorics, and then processed by
the algorithm. The AdapterSet contains the @FunctionValue annotated adapter to provide
Double values on vertices. In this example a @Weight adapter is not needed, since the
computeDirichlet algorithm uses the getDefaultmethod to obtain weight data for edges.

Generic adapters

There is a set of generic adapters implemented in the package de.jtem.halfedgetools.adap-
ter.generic. Here generic means that the adapter does not provide the data itself. Instead it
asks for other adapters to provide data and converts, merges, or recalculates its output based
on the data acquired from other adapter implementations.

The most important example of pre-defined generic adapters are position and tex-
ture position adapters. These adapters come in three variants, i.e., @Position2D,
@Position3D, and @Position4D. The implementations, e.g, de.jtem.halfedge-
tools.adapter.generic.Position3dAdapter, obtain position data from the AdapterSet
using an adapter annotated with @Position and convert the resulting data arrays if their
lengths is not equal to 3. As a result an algorithm using generic adapters is free of data
conversion code.

Error handling

If a data adapter that is used by an algorithm is not found, the AdapterSet throws exceptions
stating the name of the required annotation and the node type that is expected.

Exception in thread "main" de.jtem.halfedgetools.adapter.AdapterException: Adapter
"FunctionValue" for node VV not found
at de.jtem.halfedgetools.adapter.AdapterSet.get(Unknown Source)
at de.sechel.thesis.MyUtility.computeDirichlet(MyUtility.java:25)
at de.sechel.thesis.MyUtility.calculate(MyUtility.java:39)
at de.sechel.thesis.MyUtility.main(MyUtility.java:44)
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Figure 7.1: The user interface created by the HalfedgeInterface plug-in. It manages layers that
contain different instances of half-edge data structures and the corresponding visualizations.
Layers can be merged, OBJ files can be exported and imported, and visualization options can be
adjusted.

7.3 HalfEdgeTools and Jreality

The HalfEdgeTools package contains utility classes for the visualization of half-edge data with
Jreality [20]. It is part of the Jtem project [34]. See also Section 6.3 for the interaction between
Jreality and JRworkspace.

Half-edge Interface

The plug-in de.jtem.halfedgetools.plugin.HalfedgeInterface plays a central role. This
plug-in works as a converter between the half-edge data structure and the IndexedFaceSet data
structure used internally by Jreality. It creates a user interface that contains GUI elements for
layer management, import, export, undo, redo, and more features, see Figure 7.1.

The API of the HalfedgeInterface supports set and get methods that convert to and from
Jreality. During conversion, data is read from an AdapterSet that is managed by the half-edge
interface. The plug-in supports various data on node types. We give a list of annotation types
and their purposes. All conversion adapters work with double[] or double data types. All
supported annotation types are located in the package de.jtem.halfedgetools.adapter.type.

• @Position - Positions of vertices can have lengths 2, 3, or 4.
• @Color - Colors either on vertices, edges, or faces.
• @Normal - Normals usually for vertices or faces.
• @TexturePosition - Texture coordinates of length 2, 3, or 4.
• @Label - Text annotations that appear next to the node.
• @Radius - Radii of vertex sphere representations or edge cylinders when rendered as spheres

or tubes.
• @Size - Size in pixels of vertex points or edge lines when rendered as points or lines.

Internally the conversion is done using the classes from the package de.jtem.halfedge-
tools.jreality. Conversion from and to a Jreality IndexedFaceSet is implemented in
ConverterHeds2JR and ConverterJR2Heds.

Visualization Interface

A second important plug-in is the VisualizationInterface. It defines a plug-in API and
various implementations for data visualization with the half-edge data structure.

Every Adapter that is managed by the HalfedgeInterface is available as data source. In



7.3. HALFEDGETOOLS AND JREALITY 129

Figure 7.2: The half-edge visualization user interface. Selection of a visualization plug-in for a
data adapter (top). A histogram view for scalar data on half-edge nodes (bottom).
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Figure 7.3: Different visualization plug-ins for scalar data on faces. Colored beads (left), node
colors, and histogram view.

addition to this, every plug-in extending de.jtem.halfedgetools.plugin.data.DataSource-
Provider is asked for data adapters. A list of these data sources is displayed in the user interface,
see Figure 7.2 (top). A visualization of the selected data source is created by a corresponding
DataVisualizer plug-in. For scalar data on vertices, edges, or faces we provide the colored
beads or colored nodes visualizer, see Figure 7.3. There is a histogram that displays a density
plot for scalar data on nodes, Figure 7.3 (right) and Figure 7.2 (bottom). For vector-valued data
there is a visualizer that creates arrows starting at half-edge nodes.



Chapter 8

ConformalLab - Conformal maps
and uniformization

This chapter enables the reader to reproduce examples contained in this work that involve
discrete uniformization of Riemann surfaces, see Chapter 1, and applications of conformal
mappings of Part II. The author has written Java software, ConformalLab, to calculate the
corresponding data. The software and the data is included on the accompanying CD. Its
structure is described in the Appendix.

The software ConformalLab has been developed in Project A01 "Discrete Riemann Surfaces" of
the SFB Transregio 109 - Discretization in Geometry and Dynamics [65]. It is designed to be used
via a graphical user interface, see Figure 8.1. To store resulting data, an XML format is used.
We describe this format in Section 8.1. The graphical user interface is described in Section 8.2.
ConformalLab uses JRworkspace, see Chapter 6, to implement its user interface. This allows
the user interface to be divided into panels which serve separate purposes. ConformalLab uses
HalfEdge and HalfEdgeTools, see Chapter 7, to work with discrete surfaces.

8.1 XML data format

To store and process data, ConformalLab uses an XML data format. All examples presented
in Chapter 1 are stored in this format. All XML data is contained in the XML namespace
http://www.varylab.com/conformallab/types.

Schottky data

A Riemann surface can be given by Schottky data, see Section 1.8.2. An example is shown in
Listing 8.1. SchottkyData can include one or more SchottkyGenerators. A SchottkyGenerator
defines fix points A and B, the complex number µ, and a Circle. This circle is required to contain
A and must not contain B. If there is more that one generator, then the circles and their images
must not intersect.

<SchottkyData name="Schottky">
<SchottkyGenerator>

<A re="-1.0" im="0.0"/>
<B re="1.0" im="0.0"/>
<Mu re="0.25" im="0.0"/>

131
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Figure 8.1: The user interface window of ConformalLab.
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<Circle radius="1.3">
<Center re="-1.6" im="0.0"/>

</Circle>
</SchottkyGenerator>

</SchottkyData>

Listing 8.1 A torus given by Schottky data

Hyperelliptic data

HyperEllipticAlgebraicCurves as used in the examples of Section 1.7.2 and 1.8.3 are given by
the location of their branch points in the complex plane. All points must be distinct. Listing 8.2
shows the XML representation of an elliptic algebraic curve defining a Riemann surface of
genus 1. The point at infinity cannot be specified and is implicitly given if an odd number of
branch points is listed.

<HyperEllipticAlgebraicCurve name="Curve g1">
<BranchPoint re="-0.5" im="-1.0"/>
<BranchPoint re="0.5" im="-1.0"/>
<BranchPoint re="1.0" im="0.0"/>
<BranchPoint re="-1.0" im="0.0"/>

</HyperEllipticAlgebraicCurve>

Listing 8.2 A torus given as hyperelliptic data

Fuchsian data

A Riemann surface given by Fuchsian data (UniformizationData) is represented by genera-
tors of the corresponding Fuchsian group and their inverse elements as elements of PSL(2,R)
(UniformizingGroup and IsometryPSL2R XML nodes). In addition to the group a fundamental
polygon is defined by its vertices and edges. In Listing 8.3 the uniformizing group of euclidean
motions defines the structure of a flat torus. The FundamentalPolygon is a parallelogram. There
is only one FundamentalVertex since all vertices of the parallelogram are identified. There are
four FundamentalEdges each of which is identified with its opposite edge of the parallelogram.
Each FundamentalEdge defines a StartPosition in C that is interpreted as an element of RP2.
The polygon is positively oriented.

<UniformizationData name="Direct Uniformization">
<UniformizingGroup>

<IsometryPSL2R
m11="1.0" m12="0.0" m13="1.0"
m21="0.0" m22="1.0" m23="0.0"
m31="0.0" m32="0.0" m33="1.0"

/>
<IsometryPSL2R

m11="1.0" m12="0.0" m13="0.0"
m21="0.0" m22="1.0" m23="1.0"
m31="0.0" m32="0.0" m33="1.0"

/>
<IsometryPSL2R

m11="1.0" m12="0.0" m13="-1.0"
m21="0.0" m22="1.0" m23="0.0"
m31="0.0" m32="0.0" m33="1.0"

/>
<IsometryPSL2R

m11="1.0" m12="0.0" m13="0.0"
m21="0.0" m22="1.0" m23="-1.0"
m31="0.0" m32="0.0" m33="1.0"

/>
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</UniformizingGroup>
<FundamentalPolygon>

<FundamentalVertex index="0"/>
<FundamentalEdge index="0" nextEdge="1" previousEdge="3" identifiedEdge="2"

startVertex="0">
<StartPosition re="0.0" im="0.0"/>

</FundamentalEdge>
<FundamentalEdge index="1" nextEdge="2" previousEdge="0" identifiedEdge="3"

startVertex="0">
<StartPosition re="1.0" im="0.0"/>

</FundamentalEdge>
<FundamentalEdge index="2" nextEdge="3" previousEdge="1" identifiedEdge="0"

startVertex="0">
<StartPosition re="1.0" im="1.0"/>

</FundamentalEdge>
<FundamentalEdge index="3" nextEdge="0" previousEdge="2" identifiedEdge="1"

startVertex="0">
<StartPosition re="0.0" im="1.0"/>

</FundamentalEdge>
</FundamentalPolygon>

</UniformizationData>

Listing 8.3 A torus given by its Fuchsian uniformizing group and a corresponding
fundamental polygon. The elements of the group are either euclidean motions or hyperbolic
motions given as elements of PSL(2,R).

Discrete data

To specify discrete data we use the concept of a half-edge data structure, see also Chapter 7.
Listing 8.4 shows the structure of a HalfedgeEmbedding. Vertices are assigned coordinates in
RP3 and their index. Halfedge nodes specify indices of incident faces, edges, and vertices as
defined in Section 7.1. In addition to the data needed to specify the combinatorics of the half-
edge data structure, one can specify identifications of vertices and edges. An Identification
node contains all vertices that are identified. For example, consider a parallelogram fundamental
domain of a flat torus. In the parallelogram all four vertices are identified to form the topological
torus. Also the edges of the parallelogram are identified. An EdgeIdentification node defines
the four half-edges that belong to the pair of half-edges on the torus.

<HalfedgeEmbedding name="Uniformizing Map_domain">
<Vertex x="0.0" y="0.0" z="0.0" w="1.0" index="0"/>
<Vertex x="1.0" y="0.0" z="0.0" w="1.0" index="1"/>
<Vertex x="1.0" y="1.0" z="0.0" w="1.0" index="2"/>
<Vertex x="0.0" y="1.0" z="0.0" w="1.0" index="3"/>
<Identification>

<Vertex>0</Vertex>
<Vertex>1</Vertex>
<Vertex>2</Vertex>
<Vertex>3</Vertex>

</Identification>
<Halfedge left="0" target="1" next="1" opposite="4" index="0"/>
<Halfedge left="0" target="2" next="2" opposite="5" index="1"/>
<Halfedge left="0" target="3" next="3" opposite="6" index="2"/>
<Halfedge left="0" target="0" next="0" opposite="7" index="3"/>
<Halfedge left="-1" target="0" next="7" opposite="0" index="4"/>
<Halfedge left="-1" target="1" next="4" opposite="1" index="5"/>
<Halfedge left="-1" target="2" next="5" opposite="2" index="6"/>
<Halfedge left="-1" target="3" next="6" opposite="3" index="7"/>
<EdgeIdentification edge1="0" edge2="4" edge3="2" edge4="6"/>
<EdgeIdentification edge1="1" edge2="5" edge3="3" edge4="7"/>
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<Face index="0"/>
</HalfedgeEmbedding>

Listing 8.4 A torus given as HalfedegeEmbeddingwith identified edge pairs and vertices.

The HalfedgeEmbedding data type can be used to define discrete maps between discrete embed-
dings. A discrete map consists of a domain HalfedgeEmbedding and the corresponding image.
Both nodes must define the same number of vertices. The map is defined via vertex indices. A
vertex i from the domain is mapped to the vertex with index i in the image data structure, see
Listing 8.5.

<HalfedgeMap name="Uniformizing Map">
<Domain name="Uniformizing Map_domain">

...
</Domain>
<Image name="Uniformizing Map_image">

...
</Image>

</HalfedgeMap>

Listing 8.5 A discrete map is given by a pair of HalfedgeEmbeddings, the Domain and Image
of the map. Both are of type HalfedgeEmbedding.

A way of defining a discrete Riemann surface is to specify its discrete metric. A DiscreteMetric
defines non-oriented MetricEdges and their lengths. MetricTriangles are glues along those
edges. All triangles are oriented by the order of edges defined by attributes edge1, edge2, and
edge3 respectively. By that we can only encode oriented discrete Riemann surfaces using a
DiscreteMetric. A simple example featuring a Wente torus is shows in Listing 8.6.

<DiscreteMetric name="Wente Torus">
<MetricEdge length="1.0" index="0"/>
<MetricEdge length="1.0" index="1"/>
<MetricEdge length="1.0" index="2"/>
<MetricTriangle edge1="0" edge2="1" edge3="2"/>
<MetricTriangle edge1="0" edge2="1" edge3="2"/>

</DiscreteMetric>

Listing 8.6 A Wente torus given by a discrete metric. Vertices are given implicitly by
following the order of triangle glueing.

Data lists

Each of the data nodes as described above can appear in an element of type ConformalDataList.
A typical XML file representing the data of an example of Chapter 1 contains input data,
e.g., SchottkyData and DiscreteMetric, as well as the resulting output, i.e., the surface and
uniformization data represented as HalfedgeEmbedding and UniformizationData.

<ConformalDataList>
<SchottkyData name="Schottky Data g1">

...
</SchottkyData>
<DiscreteMetric name="Input Schottky Data Metric">

...
</DiscreteMetric>
<HalfedgeEmbedding name="Output Euclidean Embedding">

...
</HalfedgeEmbedding>
<HalfedgeMap name="Uniformizing Map">



136 CHAPTER 8. CONFORMALLAB - CONFORMAL MAPS AND UNIFORMIZATION

Figure 8.2: Data import and export interface works with XML data files as described in Sec-
tion 8.1.

<Domain name="Uniformizing Map_domain">
...

</Domain>
<Image name="Uniformizing Map_image">

...
</Image>

</HalfedgeMap>
<UniformizationData name="Direct Uniformization">

...
</UniformizationData>
<UniformizationData name="Minimal Uniformization">

...
</UniformizationData>

</ConformalDataList>

Listing 8.7 A list of data XML nodes as the result of an algorithm calculating the Fuchsian
uniformization of a genus 1 Riemann surface given by Schottky data.

8.2 Uniformization and conformal mappings

The user interface of ConformalLab is divided into panels that serve separate purposes in the
workflow of performing experiments with discrete Riemann surfaces and conformal mappings.

Data import and export

The data import and export panel, see Figure 8.2, provides functions to import and export XML
data as described in Section 8.1. Data files can be loaded into memory via the Import button. A
table lists the entries of the loaded file. Loadable are ConformalDataList as well as single data
instances. The entries of a ConformalDataList are listed in the table of the panel.

Each of the rows contains buttons to save the data to disk (blue disk), load it into the program
(gear with green arrow), or delete it from the list (red circle). The function of the load button
depends on the data type. A HalfedgeEmbedding is loaded as geometry and is displayed in the
3D viewer. A HalfedgeMap defines geometry together with texture coordinates and boundary
identifications. If suitable boundary identification is given, a uniformizing group is calculated
and visualized. HyperEllipticAlgebraicCurves are loaded into the hyperelliptic curve panel
of the user interface, see Figure 8.3, right-top. SchottkyData is loaded into the Schottky modeler
panel, see Figure 8.3, right-bottom.
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Hyperelliptic curves

The hyperelliptic curve panel (Figure 8.3 right-top) is used to create branched triangulations
of the doubly-covered sphere. Hyperelliptic curves are defined via their branch points, see
Section 1.8.3 of Chapter 1. The user can add branch points by double-clicking in the graph
paper view. Double-clicking an existing point brings up a coordinate editor. The lower section
of the panel defines parameters of mesh creation. The user can choose to add extra equally-
distributed random points to the triangulation. These points can be further optimized to form
a more regular triangulation. The number of point equalizer iterations defines the number of
gradient decent steps in the optimization of the functional defined in Section 1.7.3. The location
of the branch points can be normalized via a Möbius transformation on the sphere such that the
center of mass of the points is the center of the sphere. For the details see Section 1.6.3.

Schottky modeler

The Schottky modeler panel (Figure 8.3 right-bottom) generates Schottky data for Riemann
surfaces, see Section 1.8.2.

In the graph-paper view, the circles and fix points of the generators are shown and can be
modified. Moving a fix point of a generator transforms the corresponding circle as the image of
the circle around the other fix point. Moving a circle causes the image circle to be recalculated.
New generators can be added from the right-click menu. The parameter µ of each generator can
be edited in the table below. Similar to the generation of hyperelliptic data, additional points
can be added and modified by a regularization process. In addition to this, the number of points
that discretize the circles can be given.

The Generate Surface button creates a triangulated surface together with a metric calculated from
the Schottky data. This surface can then be uniformized via the main interface. The Uniformize
button directly creates a uniformization and introduces cuts along the circles of the Schottky
data. The corresponding fundamental domain is then bounded by the pre-images of the circles
and curves connecting them. The examples of Section 1.8.2 use this fundamental domain.

Main interface

The main interface of ConformalLab offers all functions to create the conformal mapping
examples described in this work (see Figure 8.3 left). It is divided into sections that we cover
briefly from top to bottom.

The user interface comes in two modi, normal mode and expert mode, that can be switched
with the Expert Mode check box. In normal mode we show only user interface elements that
are needed by users of VaryLab. It supports basic surface parameterization and remeshing of
discrete surfaces, see Chapter 9. All other elements are hidden in normal mode.

ConformalLab uses two numerical libraries to implement energy minimization. They can be
chosen from the drop-down box at the top of the panel. Petsc/Tao Numerics selects the PETSc/-
TAO C++ library, see [7, 8]. We use the Newton Trust Region (NTR) method as implemented
by PETSc/TAO whenever we have calculated the Hessian matrix for the corresponding energy.
Otherwise we use the LMVM method with the default configuration. Java/MTJ Numerics imple-
ments a version of Newton’s method using the linear algebra package MTJ [31]. We implement
the backtracking line-search as described by Boyd and Vandenberghe [19, pp. 464].

The Tolerance Exp and Max Iterations options are used during energy minimization. Tolerance
means absolute tolerance as defined by PETSc/TAO. The minimizer converges if the Frobenius
norm of the gradient is less than ten to the selected exponent. The Max Iterations value means
the maximum number of Newton steps carried out by the optimization library.
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Figure 8.3: The main interface of ConformalLab (left). Hyperelliptic curve interface (right-top).
Schottky modeler user interface (right-bottom).
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For surfaces with genus 1 or higher a Cut Strategy can be chosen from a drop-down menu.
Automatic creates cuts along precomputed edge cycles such that the resulting surface is simply
connected. At the same time the number of edges that have been cut is small. Selection uses
user-selected edges as cutting cycles. This is primarily used to create manual cutting curves.
NoCuts does not cut the mesh. This is needed, e.g., in the workflow of creating periodic maps
as described in Chapter 2.

The Target Geometry defines the geometry for the domain of parameterization. A value of
Automatic selects spherical geometry for surfaces of genus 0, euclidean geometry for genus 1,
and hyperbolic geometry for surfaces of higher genus.

The Create Uniformization check box defines whether a uniformization is calculated when press-
ing the Unwrap button. The program manages two instances of the surface: The input surface
and the "unwrapped" surface. Pressing the Reset button reloads the input surface.

To check boundary conditions and internal cone angles, pressing Check Gauß-Bonnet prints the
integrals over boundary curvature and Gaussian curvature to the console.

v∈∂S

(π − θv) +

v∈S̊

(2π − θv)

By default all interior angles are set to 2π unless otherwise defined by manual settings in the
Selected Nodes section. The angle at a boundary vertex is defined either manually or calculated
via settings in the Boundary section.

The Boundary section contains the settings that define boundary conditions at vertices of the
mesh. The default mode is Isometric. In this mode boundary edges on the surface and in texture
space have the same length. If boundary angles on the surface are not far away from desired
angles in the domain, then Quantized Angles mode can be used to define boundary angles via
angles on the surface and a quantization function selected from the Quantization drop-down:
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Here round(x,y) maps x to the nearest multiple of y. Conformal Curvature boundary mode defines
angles via a vector field on boundary edges as described in Chapter 3. The Circle option creates
a map to the unit circle. Using this option we invoke the method described in Sections 1.4.2
and 1.5.1. In Read Isometric Angles mode the program performs conformal parameterization with
isometric boundary. Additionally, resulting boundary angles are read into manual boundary
conditions for later use, e.g., with QuantizedAnglePeriods boundary conditions, which modify
boundary angles as described in Section 2.3.1.

The Cones section specifies automatically placed cones as introduced by Springborn et al. [69].
One can specify the number of cones and the corresponding quantization function as defined
above.
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Figure 8.4: Visualization interface. It shows the domain of parameterization for euclidean and
hyperbolic geometry. For hyperbolic images the Klein model, Poinaré disk model, and the
half-plane model are supported.

Manual boundary conditions can be specified in the Selected Nodes section. Here the currently
selected vertices and edges are listed. Selected vertices can have manually prescribed angles θ
or boundary modes as described above. Edges can be set circular with a certain intersection
angle of circum-circles, see Section 1.4.2 or Section 1.5.1. The default angle is 180◦, i.e., the two
adjacent triangles form a circular quadrilateral.

The Tools section includes commands that operate on a readily computed uniformization of a
surface of higher genus g ≥ 2. The Draw Curves On Surface check box calculates, if activated,
images of the edges of fundamental domains. These curves are displayed on the surface, see,
e.g., Figure 1.36 left. The Extract Cut-Prepared button creates a new surface as a copy of the current
input data including edges of a fundamental polygon. One can use this to create uniformized
surfaces where the triangulation fits perfectly into the fundamental polygon. The Center Selected
Vertex button applies a hyperbolic motion to the texture coordinates such that the selected vertex
becomes the center of the unit disk.

Visualization

The Visualization Interface, see Figure 8.4, shows the domain of uniformization. In addition,
depending on the geometry, one can visualize extra structures like fundamental polygons,
universal cover, or identification maps. It is divided into two sections. The generic Texture Space
Options define options for the mapping of the mesh.

The Uniformization section defines the visualization of the current uniformization. Triangulation
activates the visualization of the mesh across the universal cover of the surface using as many
group elements as specified in the Cover Elements and Cover Distance input fields. The fundamen-
tal polygon corresponding to the identity group element can be visualized with the Fundamental
Domain check box. Its axes of identification can be shown with the Axes check box. The Polygon
box enables the visualization of polygon edges for all group elements defined by Cover Elements
and Cover Distance. If the triangulation exhibits a circle pattern, face circles through vertices of
faces can be shown.
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The Geometry option is set automatically during calculation of uniformization but can be adjusted
from the check box. The automatic value depends on the genus of the surface alone and may
not be the correct choice. The program is able to calculate four different fundamental domains
that can be selected from the Domain drop-down, see Section 1.8.1. If the selected geometry
is Hyperbolic, one can choose the corresponding hyperbolic model. ConformalLab supports
visualization of Poicaré, Klein, and HalfPlane model.

The Interpolation option lets you select how textures are interpolated on the current model. If a
texture image is active, the 3D visualization is updated accordingly.
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Chapter 9

VaryLab - Discrete surface
optimization

9.1 Introduction

In this chapter we introduce the Java software VaryLab. It is a software developed at Berlin
Institute of Technology by the author of this thesis, Thilo Rörig, and others. The software has
been developed in the Projects A01 "Discrete Riemann Surfaces" and A08 "Discrete Geometric
Structures Motivated by Applications in Architecture" of the SFB Transregio 109 - Discretization
in Geometry and Dynamics [65]. It is designed to be an extensible and modular tool for
experiments with discrete surfaces in pure mathematics and applications in industrial geometry.
The purpose of this chapter is to enable the reader to reproduce the results presented in Part II
of this work.

We start with a general description of VaryLab and its features in Section 9.2. Section 9.6
introduces the user interface which is based on JRWorkspace, see Chapter 6. Section 9.7, gives
details on the use of VaryLab when calculating the examples of Chapter 2. Section 9.8 explains
the steps needed to reproduce results presented in Chapter 3. Finally, in Section 9.9 we present
the capabilities of VaryLabwhen calculating gridshell nets as explained in Chapter 4.

9.2 Non-linear discrete surface optimization

In its core, VaryLab is a solver for non-linear optimization problems on the coordinates of a
given 3D discrete surface. That means, given a surface S and functionals f1, . . . , fn : S → R we
(try to) minimize the combined functional

f (S) =
n

i=1

λi fi(S) (9.1)

143
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Figure 9.1: VaryLabmain user interface window. Visualization interface (top), energy configu-
ration and optimization tools (right), layers, selections, etc. (left).

whereλ1, . . . , λn ∈ R are user-defined weights. Correspondingly the first and second derivatives
of fi(S) are weighted by λi

∇ f (S) =
n

i=1

λi∇ fi(S), ∇∇ f (S) =
n

i=1

λi∇∇ fi(S). (9.2)

VaryLab uses the numerical library PETSc/TAO [6, 7, 8] and the corresponding Java bindings
[68] for computations. To run optimization methods we need at least an implementation of the
functional’s value. Other methods need the gradient or Hessian of the functional. The most
important methods are

f f , ∇ f f , ∇ f , ∇∇ f
NM Nelder-Mead LMVM Limited-Memory, Variable-Metric NLS Newton Line-Search

CG Conjugate Gradient NTR Newton Trust-Region.

In VaryLab a functional can choose to implement just the value. Additionally it can implement
the gradient and the Hessian of S. In principle all methods can be used with all functionals even
if those do not implement all data needed for the algorithm. VaryLab approximates the values
of the gradient or the Hessian if they are missing.

VaryLab has the option to normalize the energies before optimization and calculates a µi for
each of the energies such that

µi∇ fi(S)
 = 1 for each functional fi and for the current mesh
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geometry. Then it uses a modified energy

f̂ (S) =
n

i=1

µiλi fi(S). (9.3)

for optimization.

VaryLab can handle constraints on vertex positions. We implement this by modifying the
gradient and Hessian of the selected energies to be zero at the constraint variables. Even if
the derivative does not match the energy anymore, we can still calculate solutions for the rest
of the variables using conjugate gradient methods. Here the line search step of the algorithm
minimizes the energy over the remaining variables in the direction of the gradient, i.e., the
update will not include constraint variables.

9.3 Built-in functionals

VaryLab implements a number of energy functionals that are implemented as JRworkspace
plug-ins and can be selected in the Optimizer Plug-ins panel.

• Circular Quadrilaterals Energy - Defines an energy functional that is minimal for planar circular
quads. Since we are using an angle criterion, the convergence to planarity is relatively slow.
If the Planar Quadrilaterals energy is added to the optimization, the geometry converges more
quickly.

• Conical Quadrilaterals Energy - This energy implements an angle criterion for conical meshes.
In combination with Planar Quadrilaterals or Planar n-gons it optimizes a mesh to have the
property that faces adjacent to a vertex are tangent to a cone of revolution.

• Cotangent Dirichlet Energy - Dirichlet energy for the three coordinate functions of vertices of
a triangle mesh. Edge weights are defined as ωij =

1
2 (cotαij + cotαji) where αij and αji are the

angles opposite of the edge eij.
• Equal Edge Lengths - This energy penalizes the deviation of edge lengths from their mean

value. As a result it is minimal, if all edges have the same length.
• Incircles - The property for a quadrilateral to possess an incircle tangent to its sides is that the

two sums of opposite side lengths are equal, i.e., a+ c = b+ d. Planarity is not included in this
functional, so to get planar quadrilaterals with inscribed incircles one needs to add planarity
to the optimization.

• Touching Incircles - In a quad-mesh with incircles, the incircles need not touch. In combination
with the Incircles and Planarity energies one can create a meshes with touching incircles.

• Opposite Edges Curvature - This energy penalizes the deviation of a parameter poly-line from
a straight line. Using this energy alone, will move the mesh towards a discrete ruled surface.
Used together with, e.g., a Reference Mesh energy, this energy smoothes the parameter lines of
a quad-mesh.

• Opposite Angles Curvature - This curvature is based on the intrinsic geometry of the surface.
Let α, β, γ, and δ denote the angles in the adjacent quads at a node in cyclic order. Then the
optimal mesh satisfies α + β = γ + δ and β + γ = δ + α, i.e., the parameter lines are straight
from an intrinsic point of view.

• Planar Quadrilaterals - Energy that enforces planarity of quadrilaterals. Implemented either as
the distance of the diagonals or as the determinant of the four homogeneous vertex coordi-
nates.
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Figure 9.2: VaryLab tools tool bar.

• Planar n-gons - Generalization of the energy for planar quadrilaterals. Implemented as the
sum of all choices of four vertices in each face.

• Planar Vertex Stars - This energy is dual to the planar faces energy. It computes the volume
spanned by a node and its neighbors. Minimization yields meshes such that each node lies
in a plane with its neighbors. If used together with face planarity, the initial mesh is mapped
to a plane.

• Reference Mesh - Given a reference mesh we compute the closest point to a node and add a
spring force between each node and its projection. The projection point is recomputed in each
step of the optimization. If combined with other energies, it keeps the optimized mesh close
to a reference mesh.

• Spring Energy - The spring energy is computed by adding springs to all the edges of the mesh.
These springs can have user-specified target lengths and strengths that can be specified by
various options.

9.4 Geometry processing

The geometry processing core of VaryLab is based on HalfEdge and HalfEdgeTools (Chapter 7),
i.e., all geometry processing is done with the help of the half-edge data structure and algorithms
that run on top of it. Frequently used geometry processing features include

• Mesh Generators - Regular Planar Meshes, Convex Hull, Primitive Meshes such as cube,
cylinder, sphere, etc.

• Mesh Editing - Vertex/Edge/Face operations based on user selection.
• Subdivision - Catmull-Clark, Doo-Sabin, Loop, Sqrt3, etc.
• Remeshing - Quadrilaterals, Triangles, Singularities.

All tools are available via the tools tool bar at the top of the main window, see Figure 9.1 and 9.2.

9.5 Data visualization

VaryLab adds data sources corresponding to the energies of the optimization core. Their data
can be visualized on the surface using the Halfedge Data Visualization interface, see Section 7.3.

Example: analyzing edge length distribution.

Load a mesh geometry. In the Halfedge Data Visualization select the Edge Length data source. It
provides scalar data for edges of the mesh. Select the Histogram and Node Colors visualizers
to create colored edges and a corresponding histogram for the edge lengths of the mesh, see
Figure 9.3.
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Figure 9.3: Visualization interface (top), Visualizing mesh edge length data as node colors on a
surface and as histogram (bottom).
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Figure 9.4: The main user interface panels of VaryLab. List of optimization functional plug-
ins and their options (left). Main optimization controls with global constraints and minimizer
settings (right).

9.6 User interface

The user interface of VaryLab, see Figure 9.1, is based on JRWorkspace, Chapter 6. Thus it
inherits the ability for the user to freely move around all interface components of the main
window, see Figure 9.1. The three most important interface components are shown in Figure 9.4
and 9.5. It is the list of energies, the optimization controls, and the optimization protocol.

Optimizer Plug-ins Panel

The Optimizer Plugins panel, see Figure 9.4 (left), has a list with all currently loaded plug-ins
that implement energies for the use with the non-linear optimization core. For each energy one
can adjust the coefficient λ in the sum of functionals, see Equation (9.1). The checkbox Normalize
Energies activates normalization of energies, see Equation (9.3). For a selected energy, options
are displayed right under the table.

Optimization Panel

In the Optimization Panel, see Figure 9.4 (right), we can configure constraints and run the opti-
mization. Vertices can be fixed either globally in one or all coordinate directions, by selection,
or as boundary constraint. Constraints are handled as described in Section 9.2

The check box Allow Inner Boundary Movement is used in conjunction with boundary constraints.
The corresponding gradient part is projected onto an adjacent boundary edge thus any conjugate
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Figure 9.5: The Optimization Protocol panel shows the progress of the optimization for each
activated energy in the Optimizer Plug-ins panel, see Figure 9.4 (left).

gradient update will move the vertex along this direction. This mode is meant to be used with
straight boundaries, otherwise the behavior is undefined.

Analog to the inner boundary movement constraint, the Tangential constraint projects the gradi-
ent of a vertex onto the tangent plane at this vertex for current mesh geometry. With this option,
vertices stay close to the initial surface if the surface is sufficiently smooth but can move freely
along tangent directions of the surface.

The options Smooth Gradient and Smooth Surface apply Laplacian smoothing to either the gradient
or the coordinate values of the mesh. We use a graph Laplacian, i.e., all weights are equal to 1.

The values for Tolerance and Iterations define stop criteria for the optimization core. If the
Frobenius norm of the gradient drops below the tolerance or if the maximum number of iterations
are performed, the optimizer stops.

The numerical Method can be selected from the drop down field, see Section 9.2 for explanation.

The check box Live Geometry Updates updates the coordinates of the surface during optimization
if selected. Any visualization is updated accordingly.

Optimization Protocol Panel

During optimization VaryLab logs the energy of each functional as well as the Frobenius norm
of the gradient and plots them to the optimization protocol, see Figure 9.5. The energy value is
drawn as a green curve, the norm of the gradient is a purple curve. By default the display is
logarithmic in the values and linear in time.
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9.7 Periodic conformal maps with VaryLab

In this section we describe how the methods of Chapter 2 are implemented in VaryLab. We split
the process in two parts. Part one describes the creation of periodic triangle, quad, or hexagonal
meshes from an initial unstructured triangle mesh. Part two deals with optimization of panels
created from a mesh in part one.

9.7.1 Periodic parameterization

The parameterization part of the work is carried out via the ConformalLabmain user interface.

(0) We load a surface with two boundary components. We can map the surface to a pattern-
adapted cone of revolution using the three methods described in Chapter 2: mapping to a
cylinder (a), polygonal map to a cone of revolution (b), and isometric boundary mapping(c).

(1a) For the map to the cylinder we create a conformal parameterization with straight boundary
using the Discrete Conformal Parameterization panel and Quantized Angles/Straight boundary
mode. A cut is introduced automatically to uniquely define the map.

Figure 9.6: Map to cylinder. Start with an automatically cut mesh (top-middle and up-
per domain image) and modify the cut (top-right and lower domain image) such that the
remeshing algorithm can handle the complete boundary.

(1b) For a polygonal map to a cone of revolution, we select boundary vertices to specify bound-
ary angles for the domain. We use multiples of π3 for triangle/hexagonal panels and multiples
of π4 for quadrilaterals.

Figure 9.7: Mapping the surface from Figure 9.6 to a hex pattern adapted domain with
polygonal boundary curve. Cut orthogonal to the boundary to create a domain that can
easily be meshed with boundary-aligned hexagons. The domain is identified along the cut
via a rotation by π.
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(1c) We create an isometric boundary and a map to cone of revolution using the Read Isometric
Angles boundary mode and the NoCuts cut strategy. It creates a map to an arbitrary cone
of revolution and reads off the resulting boundary angles. Those are set as new boundary
conditions (red vertex selection). In a second step we choose the Quantized Angle Periods
boundary mode and the desired quantization for the final map to the pattern adapted cone
of revolution.

Figure 9.8: Map to cylinder with isometric boundary. Create a map with isometric boundary
without cutting the mesh (left). Modify the resulting boundary angles to support a periodic
pattern (middle). Periodic hexagonal pattern on the surface (right).

(2) We use the Cut and Glue Texture Domain command and select Orthogonal to Boundary to create
a map to a rectangle (a) or a map to a polygonal region (b). In the isometric boundary case
(c) we do not need a polygon as boundary curve.

(3) Select a predefined texture for quadrilateral, triangle, or hexagonal mesh preview from the
Content Appearance→Texture panel. Adjust the texture scale to a reasonable value. In the
isometric case (c) we close the period with the Texture Transformation user interface manually.
For cases (a) and (b), periods will be closed automatically by the remeshing algorithm.

Figure 9.9: Pattern preview using the Content Appearance→Texture user
interface.

(4) Perform remeshing in cases (a) and (b) either for Boundary Aligned Triangles or Boundary
Aligned Quads using the Surface Remeshing panel. For non-boundary-aligned parameteriza-
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tion (c) we use the Quads With Singularities/Triangles With Singularities remeshing mode.

Figure 9.10: New mesh and domain.

(5) We create a watertight mesh using the Watertight Mesh Generator and remove extra edges
and vertices. In the isometric case (c) we use a combination of Topology→Stitch and
Topology→Stitch Cut Path to remove the cut path from the mesh.

(6) For hexagonal mesh creation we select from the periodic triangle mesh all centers of hexagons
using the Selection→Lattice command. The Remove Vertex and Fill command then creates a
periodic hexagonal mesh.

Figure 9.11: Creating a periodic hexagonal mesh from a triangle mesh.

9.7.2 Panel optimization

(7) Topology→Explode creates separate faces. We use a Mean Face Edge Length histogram to show
the density of edge lengths. If we want planar panels we should planarize them now.

Figure 9.12: Measuring panel sizes and density with the Halfedge Data Visualization facility.

(8) We equalize the edge lengths per face using the Springs Energy and F-const option. Use the
Floor rounding method. Press Update to set target lengths per face.
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Figure 9.13: Creating regular elements with the Spring energy.

(9) From the histogram, read off the smallest and largest edge lengths and transfer those into
the Springs energy UI. We select the discr. option and the number of discrete steps. Optimize
the surface to consist of a limited number of panel sizes.

Figure 9.14: Optimization towards a discrete set of panel sizes.

9.8 Quasiisothermic meshes with VaryLab

The methods of Chapter 3 can be divided into two parts. The Parameterization part where we
create the coordinates of the triangle mesh based on curvature direction data on the boundary
of the mesh. And the optimization part where a quadrilateral mesh from part 1 is optimized
towards touching incircles, the defining property of discrete s-isothermic meshes.

9.8.1 Quasiisothermic paramerization

(0) We load a genus-0 surface with one boundary component.
(1) Calculate curvature direction estimates on interior vertices to find singularity locations and

indices with the Vector Field→Curvature Vector Fields command. We visualize directions using
the Halfedge Data Visualization interface. The data is called, e.g., Kmax Vec V for maximum
curvature direction with respect to the surface normal.

(2) We select singularity vertices and assign corresponding cone angles in the Selected Nodes
panel of the Discrete Conformal Parameterization panel.

(3) Calculate curvature direction estimates on boundary edges of the surface, again using the
Vector Field→Curvature Vector Fields command. We check singularity indices with the Check
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Gauß-Bonnet button in the Discrete Conformal Parameterization panel. It prints the left side of
the Gauß-Bonnet equation to the console. It should give 2π for a genus 0 surface in this case.

Figure 9.15: Inspect the curvature direction field on the surface
(left) and specify boundary conditions (right, magenta) and sin-
gularities (right, yellow).

(4) Create a discrete conformal parameterization. Use Conformal Curvature as boundary mode.
Select suitable cone angles at singularities in the Selected Nodes panel. Select a quad texture
to visualize the parameterization on the surface. Rotate the texture to match the prescribed
boundary directions.

(5) Move the texture such that singularities lie either in the middle or at a corner of a quad of
the texture. Use the Texture Remeshing→Transform Texture command to transform the texture
such that two selected vertices lie on (0, 0) and (1, 0) respectively. This method works for one
or two singularities. We do not implement methods to distort the mapping to match more
that two singularities.

Figure 9.16: A quasiisothermic parameterization and its domain (left and middle). Move
the singularity to a symmetry point of the pattern to close the parameter lines on the surface.
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(6) Create a subdivision quad-mesh using the Surface Remeshing panel and the Quads With
Singularities mode. This mode is available in the Expert mode of the panel. Press the Lift/Flat
button to lift the subdivision to the surface.

(7) Use the Texture Remeshing→TextureGeometry command to extract a quad mesh from the
subdivision mesh. Disable the layer of the original mesh as we will continue to work with
the quad-mesh.

Figure 9.17: Three-step remeshing of the parameterized surface. Cre-
ate a subdivided domain (left), lift this mesh to the surface (middle).
Extract the new mesh from the subdivided (right).

(8) Sew up the path from the boundary to the singularity using the Topology→ Stitch Cut Path
command. Select the two boundary vertices and a connected edge on the path.

(9) Remove extra vertices with the Texture Remeshing→Collapse 1,2-Valent Vertices command.
(10) Clean up the mesh from extra edges and vertices with the Selection→Geodesic, Edit→Remove

Edge And Fill, and Texture Remeshing→Collapse 1,2-Valent Vertices commands.

Figure 9.18: Removing the cut from a singularity to the boundary. Stitch the cut path by
selecting the two vertices on the boundary and one adjacent edge on the path (left). Remove
resulting vertices of valence 2 (second to left). Select the path and remove extra edges.

9.8.2 Optimization towards touching incircles

In Chapter 3, Section 3.5, we propose to further optimize a new mesh to possess touching incir-
cles, i.e., being a discrete s-isothermic mesh by definition. We propose an energy, implemented
as Touching Incircles energy, that enforces planar quadrilaterals that possess incircles to addition-
ally possess touching incircles. Thus we superpose three energies to achieve the desired effect.
Activate Incircles, Planar Quads, and Touching Incircles to define the required energy.
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9.9 Gridshells with VaryLab

VaryLab supports the creation of gridshell meshes, i.e., quadrilateral meshes with equal edge
lengths. In this section we describe how the results of Chapter 4 were created using the features
of VaryLab.

(0) Design the target surface. The surface must be a topological disk.
(1) Create an extended reference surface.

Figure 9.19: The target shape design (left) and the extended surface used as reference surface
(right).

(2) Discrete conformal parameterization using isometric boundary.

Figure 9.20: Conformal parameterization with orthogonal parameter lines visualized with
a quadrilateral texture (left). Parameter lines sheared by 40◦ (right).

(3) Create a new quadrilateral mesh using the parameterization from step 2. We are free to
shear the meshing pattern in the domain by an angle α. From the Surface Remeshing panel
we choose the Quads mode and press Remesh. Alternatively the three-step remeshing method
can be performed, see Figure 9.17.

Figure 9.21: New quadrilateral meshes with orthogonal parameter lines (left) and parameter
lines sheared by 40◦ (right).
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(4) Remove all boundary vertices and analyze the remaining edge lengths with node colors and
histogram.

Figure 9.22: Edge length analysis. Target edge length should be below the mean edge length.

(5) Configure the optimization using the Reference Surface energy with the surface from step
1. Add the Springs energy with a constant edge length depending on the size of the target
surface. Finally add the Opposite Edges Curvature energy as a fairing term and to control the
local curvature of curves.

Figure 9.23: Reference surface visualization (left). Optimized mesh (right). Optimized
histogram (bottom).

(6) Run optimization. It has been proven successful to switch the reference surface energy off
for a few iterations to let the mesh relax towards equal edge length and smooth parameter
curves. Switching it back on will then project the mesh back onto the reference surface
retaining most of the lengths and curvatures. Since the energy is non-convex there are lots
of local minima and the solution depends heavily on the solver in use. The CG, conjugate
gradient, solver converges slower but yields smoother results than, e.g., the LMVM solver.
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CD Content

The data disk that accompanies this work contains data and source code. See Figure 24 for an
overview of the directory structure of the data. We include the data and images for most of the
objects investigated in Chapter 1. For many of the examples we include more instances of the
same experiment varying in genus or discretization resolution.

For example the folder /data/schottky_g2 contains data for a Riemann surface of genus 2
given by Schottky data, see Section 1.8.2. It contains the files genus2.xml, genus2_fine2.xml,
and genus2_fine2.xml differing in the number of vertices on the Schottky circles and in the
number of vertices approximating the metric in the interior of the fundamental domain.

Data belonging to chapters of the applications part is contained in the respective folders.

Licensing

All software packages belonging to the Jtem (www.jtem.de) collection and the corresponding
source code are licensed under the BSD 2-Clause License. This includes the libraries JRworkspace
(Chapter 6), HalfEdge, and HalfEdgeTools (Chapter 7).

ConformalLab is licensed as follows (copied from creativecommons.org): ConformalLab by
Stefan Sechelmann is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License.

VaryLab and its source code does not have a license yet. The source code and binaries are
included on the data disk. If you want to use VaryLab please contact the author or Thilo Rörig
or visit the webpage at www.varylab.com.
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166 CD CONTENT

/...............................................................Root folder of the data disk
applications
gridshells ........................................Models and images of Chapter 4
periodic...................................Models and images treated in Chapter 2
quasiisothermic...................................Models and images of Chapter 3

data........................................................Example data for Chapter 1
algorithm
bear_torus
branched_euclidean_genus_2
branched_genus_1
...

java........................................ Java source files of the listings of Chapter 6
publications..............Preprint versions of the original articles of Part I and Part II
software........Source code and binaries of the software packages described in Part III
jtem
halfedge..............................................................HalfEdge
halfedgetools..................................................HalfEdgeTools
jrworkspace........................................................JRworkspace

conformallab.......................................................ConformalLab
varylab....................................................................VaryLab

Thesis.pdf...........................................This document in PDF file format

Figure 24: Directory structure of the data provided with this thesis.
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