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Uniformization of discrete Riemann surfaces

Stefan Sechelmann

(joint work with Alexander I. Bobenko and Boris Springborn)

On the basis of the notion of discrete conformal equivalence of Euclidean triangle
meshes we define discrete conformal equivalence of spherical and hyperbolic tri-
angulations [1, 3, 4]. We consider triangulated surfaces equipped with a metric of
constant curvature K = 0, 1, or −1 except at the vertices of the triangulation,
where the metric is allowed to have cone-like singularities. The discrete metric of
such a surface is the function that assignes to each geodesic edge ij its length lij .
Now let l : E → R>0 be the discrete metric of a triangulated Euclidean surface
and let l̃ : E → R>0 be the discrete metric of an (a) Euclidean, (b) hyperbolic, or
(c) spherical surface with combinatorially equivalent triangulation. Then l and l̃
are called discretely conformally equivalent if there exists a function u : V → R on
vertices such that
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A discrete Riemann surface is an equivalence class of discretely conformally equiv-
alent metrics. It is characterized by the length-cross-ratios defined on edges

lcrij =
lik ljl
lkj lli

,

where k and l are the vertices of two triangles sharing the edge ij .
The discrete uniformization problem is formulated as follows: Given a discrete

metric, find a discretely conformally equivalent Euclidean, spherical, or hyperbolic

Figure 1. An embedded genus 3 surface and its uniformization.
The dashed lines are the axes of the hyperbolic translations that
identify corresponding edges of the fundamental polygon. The
curves on the embedded surface are the pre-images of the polygon
and its axes.
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Figure 2. Uniformization of a discretely sampled conformal im-
mersion of the Wente torus. The faces of the polyhedral surface
are approximate conformal squares. In the discrete uniformiza-
tion their images are approximately squares, as it should be.

Figure 3. Uniformization of a genus 3 hyperelliptic surface cre-
ated from a two sheeted branched cover of the Riemann sphere.
The dashed lines are the axes of the hyperbolic translations that
identify opposite sides of the fundamental polygon.

metric without cone-like singularities at vertices, i.e., such that the sum of angles
of corresponding triangles around every vertex is 2π. As in the smooth case:
For triangulated surfaces of genus g = 0, 1, or >1 one obtains a Euclidean,
spherical, or hyperbolic discretely conformally equivalent metric, respectively. In
all three cases we give a variational description of the corresponding uniformization
problem. It is related to volumes of ideal hyperbolic polyhedra [1, 5]. In the
Eucliean and hyperbolic case the corresponding functional is convex. Using this
technique we show how to calculate standard representations of discrete Riemann
surfaces (Figures 1, 2).

For higher genus surfaces we calculate Fuchsian uniformization groups and show
different examples for hyperelliptic and general surfaces (Figure 1). We derive a
hyperellipticity criterion from the Fuchsian group representation. If and only if
the surface is hyperelliptic then in a normalized presentation where opposite sides
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Figure 4. Fuchsian uniformization of a discrete Riemann surface
given by Schottky data. The fundamental domain is bounded by
images of the Schottky-circles and cuts that connect them.

of a fundamental polygon are identified, the axes of the hyperbolic translations
meet in a point (Figure 3).

We show how to pass from a Schottky to a Fuchsian uniformization. Here one
cannot start with the edge length of a triangulation of a Schottky fundamental
domain, since the edges of identified boundaries have different lengths. But the
length-cross-ratios lcr : E → R>0 are well defined. They determine a discrete
conformal class of globally defined discrete metrics l that can be used to obtain
a Fuchsian uniformization. The Schottky-circles are mapped to smooth curves in
the corresponding Fuchsian uniformization (Figure 4).
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Geometric properties of anti-de Sitter simplices and applications

Jean-Marc Schlenker

(joint work with Jeffrey Danciger and Sara Maloni)

Ideal hyperbolic polyhedra have interesting properties that come up in different
areas of mathematics. They are uniquely determined by either their dihedral


