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Introduction

We describe the mathematics and implementation of three different com-
puter programs. The first chapter is about Koebe polyhedra, these are
polyhedra with edges tangent to the unit sphere. They are called Koebe
polyhedra in honor of Paul Koebe (1882 - 1905).

Theorem. (Koebe) For every triangulation of the sphere there is a packing
of circles on the sphere such that circles correspond to vertices and two circles
touch if and only if the corresponding vertices are adjacent. This circle
pattern is unique up to Möbius transformations of the sphere.

The theorem, published in [Koe36], can be generalized to polytopal cellular
decompositions of the sphere (Definition 1.1.2) and to circle patterns. In
this setting there is a circle for every vertex and every face and these circles
intersect orthogonally. A circle pattern on the sphere is defined by the radii
of the circles. For such a circle pattern we can derive a polyhedron with
edges tangent to the unit sphere. The resulting polyhedra are subject of the
first part of this work. Figure 0.1 shows examples of Koebe polyhedra. For

Figure 0.1. Koebe polyhedra

the calculation of orthogonal circle patterns on sphere we use the methods
developed in [BS04, Spr05, Spr03]. We developed Java software for the
construction and modification of Koebe polyhedra.

The second chapter of this document describes the creation of discrete mini-
mal surfaces. Smooth minimal surfaces have been studied quite comprehen-
sively in the past century. The latest efforts on this subject now seek for
discrete analogs for the well developed theory of smooth minimal surfaces.
In [BHS06] discrete minimal surfaces are defined and these definitions di-
rectly give rise to algorithms for calculating the surfaces. In the smooth case
minimal surfaces are a subclass of isothermic surfaces and defined by their
property to be dual to the image of the Gauss map. The duality transform
is the Christoffel transform and this duality carries over to the discrete case.
Here Koebe polyhedra play the role of the discrete Gauss map and the trans-
formation is the discrete Christoffel transform. We describe the creation of
algorithms for calculating discrete minimal surfaces and develop methods to
cope with boundary conditions. We present many nice examples to illustrate

v



Figure 0.2. Discrete minimal surfaces: Enneper, Schwarz
P, Schoen I-6

the usage of our algorithms. Figure 0.2 shows the Enneper, Schwarz P and
the Schoen I-6 discrete minimal surfaces.

In the third chapter we focus on the creation of convex polyhedra in general.
Unlike in the first part the data we have now is non-combinatorial. Alexan-
drov’s theorem states that is it sufficient to prescribe a convex polyhedral
metric on the sphere to define a convex polyhedron uniquely. The metric
then defines the combinatorics of the polyhedron uniquely. [BI06] contains
a constructive proof of Alexandrov’s theorem that gives the idea for the al-
gorithm described in this part of the work. We present software that is able
to calculate convex polyhedra from a given metric. Figure 0.3 shows poly-

Figure 0.3. Random edge lengths on the icosahedron combinatorics

hedra created by using the combinatorics of the icosahedron with random
edge length as input for our algorithm. To test the algorithm we calcu-
late some D-Forms [Bou]. These are piecewise developable surfaces which
are glued from two pieces. As a generalization we construct a Reuleaux-
Triangle-Tetrahedron, a tetrahedron glued from four Reuleaux triangles.

In Chapter 4 of this work we describe some aspects of the software developed
for this project. We give details about the combinatorial data structure
used throughout the entire work. All the software is implemented using the
programming language Java.
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CHAPTER 1

Koebe Polyhedra

1.1. Theory

In this chapter we describe how to construct Koebe polyhedra, these are
convex polyhedra with edges tangent to the sphere. We follow the approach
of [BS04] and add implementational details. The goal is to create an al-
gorithm that computes Koebe polyhedra with the combinatorics of a given
planar graph. To understand for which planar graphs we can compute a
corresponding polyhedron, we need to have a look at the main theorems of
[BS04]. Firstly we define the objects we are going to use.

Definition 1.1.1. A family E = {eα}α∈A of disjoint subsets of S2 a is called
a cellular decomposition of the sphere if

(1) S2 =
⋃

α∈A eα,
(2) for all e ∈ E there exists a k(e) ∈ N0 and an homeomorphism

Dk(e) → e,
where Dk(e) is the k(e) dimensional open disk,

(3) for all e ∈ E there exists a continuous map ϕe : Dk(e) → S2 such
that the restriction

ϕe |Dk(e) : Dk(e) → e

is a homeomorphism and ϕe

(
∂Dk(e)

)
⊂ X [k(e)−1],

where X [n] :=
⋃
{e ∈ E, k(e) ≤ n} is the n-skeleton of E.

Definition 1.1.2. A polytopal cellular decomposition is a cellular decompo-
sition of the sphere with the combinatorics of a convex three-dimensional
polytope. In particular this means that there are no edge loops, no edges
share the same vertices, and every vertex has at least three adjacent edges.

The program described in the implementation section works on these poly-
topal cellular decompositions. The graph of such a decomposition, which is
the edges and vertices, can easily be entered via a user interface. Essential
for the construction of Koebe polyhedra are circle patterns and packings.

Definition 1.1.3. A circle packing on the sphere/Euclidean plane is a con-
figuration of circular disks in the sphere/Euclidean plane such that the disks
touch but do not overlap. A circle pattern on the sphere/Euclidean plane
is a configuration of circular disks in the sphere/Euclidean plane such that
the disks might overlap.

1



Figure 1.1. Circle patterns on the sphere

Figure 1.1 shows circle patterns on the sphere with orthogonally intersecting
circles. The red and blue circles form circle packings on the sphere. The
following theorem deals with circle patterns on the sphere:

Theorem 1.1.4. For every polytopal cellular decomposition of the sphere,
there exists a pattern of circles on the sphere with the following properties.
There is a circle corresponding to each face and to each vertex. The vertex
circles form a packing with two circles touching if and only if the corre-
sponding vertices are adjacent. Likewise, the face circles form a packing
with circles touching if and only if the corresponding faces are adjacent. For
each edge, there is a pair of touching vertex circles and a pair of touching
face circles. These pairs touch at the same point, intersecting each other
orthogonally. This circle pattern is unique up to Möbius transformations.

This theorem gives the existence (and uniqueness) of orthogonal circle pat-
terns on the sphere. To arrive at a polyhedron we need the next theorem.

Theorem 1.1.5. For every polytopal cellular decomposition of the sphere,
there is a combinatorially equivalent polyhedron with edges tangent to a
sphere. This polyhedron is unique up to projective transformations that fix
the sphere. There is a simultaneous realization of the dual polyhedron, such
that corresponding edges of the dual and the original polyhedron touch the
sphere at the same points and intersect orthogonally.

This theorem inspires the definition of Koebe polyhedra. A Koebe polyhe-
dron is a convex polyhedron which exhibits the properties of Theorem 1.1.5.

Now we can give the answer to the question above. For every planar graph,
which is combinatorially equivalent to a polytopal cellular decomposition of
the sphere, a corresponding Koebe polyhedron can be computed. We call
such a graph a valid graph. As Theorem 1.1.4 and 1.1.5 suggest we need
to compute circle patterns on the sphere. For such a circle pattern we can
construct the corresponding Koebe polyhedron. Starting with a valid graph,
what is the combinatorics of the circle pattern in question? It is the medial
combinatorics which has a face corresponding to every face and every vertex
of the initial graph. Given a valid planar graph we construct the medial
graph which has the combinatorics of the circle pattern of Theorem 1.1.4.

2



Figure 1.2. The medial combinatorics of the cube

The medial graph is a quad-graph, that is every face has four edges and each
vertex has degree of four. Every face corresponds to a circle of the circle pat-
tern. At each vertex two vertex circles and two face circles touch. Figure 1.2
shows the combinatorics equivalent to the cube and the corresponding me-
dial combinatorics. Shaded faces belong to the faces of the cube, white faces
correspond to vertices. The outside region is considered to be a face as well.

A circle pattern on the sphere is defined uniquely up to rotation of the sphere
by its radii and intersection angles. If we prescribe intersection angles and
calculate the radii, then we can recover the circle pattern by successive
construction.

Faces of the initial graph belong to a circle packing on the sphere. Vertices
correspond to the other circle packing. Figure 0.1 shows Koebe polyhedra
with blue circles for the faces and red vertex circles. A vertex of the Koebe
polyhedron is the apex of the cone that touches the unit sphere at the
corresponding circle. This apex can be calculated in terms of pole and polar
of the plane through the circle. Another way to get the cones apexes is to
reflect the centers of the circles on the unit sphere.

In [BS04] a variational principle is used to approximate the radii of a cir-
cle pattern on the sphere. Here the faces of the medial combinatorics are
denoted by fi. For the radius rf of a face f define the logarithmic radius

ρf := log rf . (1)

Edges are defined as directed edges ej and −ej . En edge is a pair of directed
edges ej and −ej . There are no single edges. Vertices are denoted by v.

Every undirected edge carries an angle θe. For those angles define the inter-
section angle

θ∗e := π − θe. (2)

A circle pattern must then admit the following non-linear equations. For
every face f it is

2π −
∑

b

(pb + θ∗b ) = 0 (3)

3
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Figure 1.3. Angles at a circle

where the sum is taken over all boundary edges of f . pb is a function in
terms of θe, ρfl

, and ρfrdefined by

pb = 2 arctan
(

tan
θ∗b
2

tanh
ρfl
− ρfr

2

)
.

Here ρfl
and ρfr are the radii on the left and on the right of the edge b.

Figure 1.3 shows the angles between the intersections of the circles and the
center. For an edge e the angle ϕe is

ϕe = pe + θ∗e .

Thus, for a circle around face f , all neighboring circles fit around and form
a correct circle pattern if the radii admit Equation 3. For an orthogonal
circle pattern we set θe = π for all edges.

The solution of Equation 3 can be understood as the critical point of a
functional S. Such a circle pattern functional is a function

S : RF → R

where F is the number of circles in the pattern or the number of faces in the
underlying combinatorics. [BS04, Spr03] define three different functionals:
An Euclidean, a spherical, and a hyperbolic functional. It is shown that
critical points of S belong to circle patterns in the respective space. Thus
minimizing the spherical functional leads to a circle pattern on the sphere.

As pointed out by the authors, the spherical functional is not convex. Thus
standard numerical methods are not guaranteed to succeed. The Euclidean
circle pattern functional on the other hand is convex and can be optimized
using Newton’s method. Fortunately the Euclidean circle pattern functional
can often be used to calculate circle patterns on the sphere as well. A cir-
cle pattern in the Euclidean plane can be projected stereographically to the
sphere. Since stereographic projection preserves angles, the resulting inter-
section angles are correct. In our special case of orthogonal circle patterns
the projected pattern will be an orthogonal circle pattern as well.

4
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Figure 1.4. The cube medial combinatorics with v∞ removed

The Euclidean circle pattern functional is

SEuc(ρ) =
∑

fj◦ |||
•
•
◦fk

[
pe(ρfk

− ρfj
)− θ∗e(ρfj

+ ρfk
) (4)

+ Cl2(θ∗e + pe) + Cl2(θ∗e − pe)− Cl2(2θ∗e)]

+
∑

f

Φfρf .

A definition of Clausen’s integral Cl2 can be found in the appendix of
[BS04, Spr03]. To understand why a circle pattern is a critical point of
this functional we have to inspect its derivatives. It is

∂SEuc

∂ρf
= Φf −

∑
b

(pb + θ∗b ) (5)

S′′
Euc =

∑
fj◦ |||

•
•
◦fk

sin θe

cosh(ρfk
− ρfj

)− cos θe
(dρfk

− dρfj
)2 (6)

where the first sum is taken over all boundary edges of f . Setting Φf = 2π
for a face therefore implies

∑
b ϕb = 2π for a critical point of the functional.

To calculate circle patterns for the entire sphere we choose a vertex v∞ from
the medial combinatorics and use it as the center of projection. Stereo-
graphic projection maps this vertex to infinity. Thus the circles through
this vertex are straight lines after projection. This observation leads to the
idea to remove the vertex v∞ from the medial graph and calculate the circle
pattern for the remaining disk. Removing a vertex includes the removal of
all adjacent edges and faces. The medial graph is a quad-graph and remov-
ing a vertex implies removing four edges and four faces. The four circles of
the removed faces are two vertex and two face circles. Figure 1.4 shows
the resulting graph of the cube combinatorics after the removal of v∞. The
circles of the four removed faces intersect orthogonally, so that the resulting
circle pattern is bounded by a rectangle. Figures 1.5 and 1.6 show the circle
patterns of the cube and the icosahedron respectively. This proceeding is
also described in [Zie04].
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Figure 1.5. The medial combinatorics and circle pattern of
the cube in the Euclidean plane

Figure 1.6. The circle pattern of the icosahedron

Assuming circles of infinite radius at the boundary, we can compute circle
patterns for the whole Euclidean plane. The angles θ∗ then define intersec-
tion angles with the boundary. Some quantities in the calculation of SEuc

however are only defined for internal edges. To calculate the functional the
sums in 4, 5, and 6 are taken over internal edges only. For the faces we set

Φf =

{
2π f is interior edge
2π −

∑
eb

2θ∗eb
f is boundary face

where the sum is taken over all boundary edges of f which are also boundary
edges of the combinatorics.

Now we can calculate circle patterns on the sphere using the Euclidean circle
pattern functional and stereographic projection. The projection that maps
points from the plane to the sphere is given by

πvertex : R2 → S2 (7)

(
x
y

)
7→


2x
2y

x2 + y2 − 1
x2 + y2 + 1

 .

6
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Figure 1.7. Edge layout

To get the Koebe polyhedron of a circle pattern, we have to compute the
poles of the corresponding circles. A pole of a plane that intersects the
unit sphere is the apex of the cone that touches the sphere at the circle of
intersection. Let ax + by + cz + dw = 0 be the plane through the circle of
face fi. The pole of this plane with respect to the unit sphere is given by
(a, b, c,−d).

1.2. Implementation

1.2.1. The Circle Pattern. The gradient of the Euclidean circle pat-
tern functional is a function

S′
Euc : RF → RF .

We solve the equation S′
Euc(ρ) = 0 by using Newton’s method. Taylor

expansion gives

S′
Euc(ρ

0 + ρs) ≈ S′
Euc(ρ

0) + S′′
Euc(ρ

0)·ρs.

Therefore Newton’s step requires solving the linear system

S′
Euc(ρ

0) = −S′′
Euc(ρ

0)ρs.

Since the resulting circle pattern is unique up to scale and Euclidean motion,
we choose a reference face f0 and the set ρ0 = 0. We reduce the system to
size F − 1 to keep the reference radius fixed. To speed up convergence, we
use the Armijo rule for controlling the step-size in Newton’s method. Choose
0 < α < 0.5, 0 < β < 1 and for every step find n ∈ N such that

SEuc(ρ0 + βnρs) ≤ SEuc(ρ0) + α < S′
Euc(ρ

0), βnρs > .

Then set ρn−1 := ρn+βnρs for the next step. We use α = 0.2 and β = 0.5.
See [BV04] pp. 463-466 for a comprehensive description of this step-size
controller. We utilize the numerical algorithms of the “Matrix Toolkits for
Java API [Hei]” and the package jtem [TBa] for linear system solving and
matrix factorization.

Minimizing the Euclidean functional produces correct radii for the given
combinatorics in the plane. We calculate the coordinates (centers and in-
tersection points) of the circle pattern with an iterative layout algorithm.
Starting with an arbitrary face, we enumerate the combinatorics in a depth-
first manner. Figure 1.7 shows the layout at edge e. Given the center of fl

7



and the start vertex v1, the position of fr is obtained by rotation of fl by
θ∗ around v1 with the scale factor is rr

rl
. The position of v2 is the position

of v1 rotated by ϕe around fl.

The orthogonal circle pattern on the sphere is obtained by stereographic pro-
jection to the unit sphere with center at the origin. The point p̂0 = (0, 1, 0, 1)
is the center of projection. Intersection point of the circles map to points
on the sphere by the Mapping 7. In the implementation we interchange the
y and z coordinates. As of the medial graph construction there are face
circles and vertex-circles belonging to faces and vertices of the initial combi-
natorics. The Centers of vertex-circles map to the pole of the corresponding
circle on the sphere and form the vertices of the Koebe polyhedron. Let r
be the radius of the mapped circle. The mapping is

πcenter : R2 → R3

(
x
y

)
7→


2x
2y

x2 + y2 − r2 − 1
x2 + x2 − r2 + 1

 .

The removed faces of the medial graph belong to circles through infinity.
They are projected to the north pole of the sphere. The pole of such a circle
can be expressed in terms of the vertices of a boundary edge. Let pi and pj

be those vertices, and let ax + by + cz + dw = 0 be the plane through the
three points pi, pj and p̂0. Calculation yields

det


xi xj 0 x
0 0 1 y
yi yj 0 z
1 1 1 w

 = (yj − yi)x + (xiyj + yixj)y

+(xi − xj)z + (yixj − xiyj)w.

Then the pole is given by

(pi, pj) 7→


yj − yi

xiyj + yixj

xi − xj

−(yixj − xiyj)


where pi = (xi, yi), pj = (xj , yj).

1.2.2. Normalization. The resulting polyhedron is unique up to pro-
jective transformations that fix the sphere. [Spr05] describes a unique rep-
resentation with the property that the barycenter of the vertices is the center
of the unit sphere. Figure 1.8 shows a cube Koebe polyhedron in a normal-
ized and non-normalized representation. Let p1, ..., pn be the vertices on the
sphere in homogeneous coordinates pi = (xi, yi, zi, wi). Define the scalar
product

< pi, pj >:= xixj + yiyj + zizj − wiwj .

Minimize the function

F (p) =
n∑

i=1

− log
(
−< p, pi >

< p, p >

)
8



Figure 1.8. The cube Koebe polyhedron non-normalized
and normalized version

to end up with a point p̂ inside the sphere. Normalize p̂ such that < p, p >=
−1. It is p = p̂√

−<p̂,p̂>
. Use the Gram-Schmidt orthogonalization method

and the vectors p, (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0) to construct an orthonor-
mal transformation matrix A. Calculate the inverse of that matrix with
respect to the scalar product <,>. It is

A−1 = ET AE

where

E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .

Transform the points p1, ..., pn with this inverse to arrive at the normalized
point set.

The minimization of F is carried out using the same algorithm as for the
Euclidean circle pattern functional. This approach can fail as the functional
is non-convex and there are examples which produce incorrect results. To
improve the results of the minimization, we try to start at a good guess. We
introduce a pre-conditioning by translation and scaling of the circle pattern
before the projection. Ensure that one half of the points gets mapped to
the upper hemisphere and the other to the lower one after stereographic
projection. In vast majority of examples this treatment is sufficient and the
minimization succeeds.

1.3. The Program

The goal of the implementation was to design a program that could create
and edit Koebe polyhedra. The user should enter an embedded graph which
is automatically translated into the corresponding polyhedron. The Java
software, which has been created for this project, is included on CD-ROM
(Section 4.2).

The Application consists of the graph editor on the left side and a 3D viewer
on the right. If the input graph is valid the algorithm is run and the resulting
polyhedron is displayed. There are several viewing options which include

9



Figure 1.9. The Koebe polyhedron editor

check-boxes for circles, mesh, and faces (Figure 1.9). Internally the graph is
represented by a half-edge data structure which is described in Section 4.1.

10



CHAPTER 2

Discrete Minimal Surfaces

This chapter discusses the construction of discrete minimal surfaces. We use
the method developed by Bobenko, Hoffmann, and Springborn in [BHS06].

2.1. Theory

A reasonable definition of discrete minimal surfaces carries as much prop-
erties as possible from the smooth to the discrete case. As described in
the article, the duality transform of minimal surfaces has a discrete analog.
[BHS06] defines the Christoffel transform of a discrete minimal surface to
be the discrete analog of the Gauss map. This definition leads to a construc-
tion method once this discrete Gauss map can be computed. As defined in
the article, the Gauss map of a discrete minimal surface corresponds to a
part of a Koebe polyhedron. Thus we can compute Koebe polyhedra and
dualize them to obtain discrete minimal surfaces. To understand the prop-
erties of the duality transformation of our surfaces, we need to have a look
at a more general class of surfaces first.

In the smooth world minimal surfaces are a subclass of isothermic sur-
faces. In the discrete case discrete minimal surfaces are a subclass of dis-
crete isothermic surfaces. Discrete minimal surfaces are quad-meshes whose
quadrilaterals exhibit the following property.

Definition 2.1.1. Four points p1, . . . , p4 form a conformal square if and
only if there exists a Möbius transformation such that the transformed points
form a square.

Discrete isothermic surfaces are now defined in terms of these conformal
squares.

Definition 2.1.2. Let D be a quad-graph such that the degree of every
interior vertex is even. (That is, every vertex has an even number of edges.)
Let V (D) be the set of vertices of D. A function

f : V (D)→ R3

is called a discrete isothermic surface if for every face of D with vertices
v1, v2, v3, v4 in cyclic order, the points f(v1), f(v2), f(v3), f(v4) form a
conformal square.

In [BHS06] discrete minimal surfaces are defined as discrete isothermic
surfaces which are dual to Koebe polyhedra. The following proposition from
[BHS06] defines this duality transformation.

11



Figure 2.1. The quad-graph of a Koebe polyhedron and the
dualized surface

Proposition 2.1.3. Let f : V (D) → R3 be a discrete isothermic surface,
where the quad-graph D is simply connected. Then the edges of D may
be labeled “+” and “−” such that each quadrilateral has two opposite edges
labeled “+” and the other two opposite edges labeled “−”. The dual discrete
isothermic surface is defined by the formula

∆f∗ = ± ∆f

‖ ∆f ‖2
(8)

where ∆f denotes the difference of neighboring vertices and the sign is cho-
sen according to the edge label.

Definition 2.1.4. Let f : V (D) → R3 be a discrete isothermic surface. f
is a discrete minimal surface if and only if the the dual discrete isothermic
surface corresponds to a Koebe polyhedron.

That means if the dual of a discrete isothermic surface is the quad-graph
of a Koebe polyhedron, it is a discrete minimal surface. The quad-graph of
a Koebe polyhedron consists of all conformal squares, thus it is a discrete
isothermic surface. Figure 2.1 (left) shows such a quad-graph. All quadri-
laterals are kites with at least two right angles. These kites are always
conformal squares.

We now construct discrete minimal surfaces by dualizing the quad-graph of
our Koebe polyhedron from Part 1 of this work. Figure 2.1 (right) shows the
dualized quad-graph of the polyhedron on the left. The vertices with degree
of three correspond to singularities of the resulting surface. Here we cut
the combinatorics to resolve the singularities. To gain more control over the
shape of the result we have to deal with boundary conditions and umbilic
points.

The goal of the implementation was to create an application that could
build discrete minimal surfaces with a prescribed combinatorics of curvature
lines. Additionally we want to create umbilic points at the boundary. The
boundary of the combinatorics is either a curvature line or an asymptotic
line depending of the boundary style. It is not possible to control such

12



behavior using the Euclidean functional and stereographic projection. For
that reason we use the spherical functional described in [BHS06, Spr03].

Here as in the Euclidean case the parameters of the functional are the radii
of the corresponding circle pattern in the sphere. For the radius rf of face
f define

ρf := log tan
r

2
.

The spherical functional is

Ssph(ρ) =
∑

fi◦ |||
•
•
◦fj

λe

[
pe(ρfk

− ρfj
)− se(ρfk

+ ρfj
)− π(ρfk

+ ρfj
) (9)

+Cl2(θ∗e + pe) + Cl2(θ∗e − pe)− Cl2(2θ∗e)
−Cl2(θe + se) + Cl2(θe − se)− Cl2(2θe)]

+
∑
◦f

Φfρf .

Here pe is defined like above and se is

se = 2arctan
(

tan
θ∗e
2

tanh
ρfk

+ ρfj

2

)
.

The sum in Equation 9 is taken over all edges including the boundary. For
a boundary edge eb set ρ = 0 for the missing face. λe is defined for all
undirected edges. It is

λe :=

{
1
2 fe and f−e are boundary faces
1 else

where a face f is said to be a boundary face if the boundary of f contains
a boundary edge. See Section 2.1.2 for a detailed description of parameter
λe. The derivatives of the functional are

∂Ssph

∂ρf
= Φf −

∑
b

λb(pb + sb + π)

S
′′
sph =

∑
fj◦ |||

•
•
◦fk

λe

(
sin θe

cosh(ρfk
− ρfj

)− cos θe
(dρfj

− dρfk
)2

− sin θe

cosh(ρfk
+ ρfj

) + cos θe
(dρfj

+ dρfk
)2

)
.

Again like for the Koebe polyhedron ∂Ssph

∂ρf
= 0 implies that the angles ϕe

make the circles fit. It is

ϕe = pe + se + π.

Therfore we set Φf = 2π for all faces f . For a boundary edge it is pb+sb = 0
so

ϕb = π

holds for all boundary edges.
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Figure 2.2. Curvature line sketch (left) and the correspond-
ing circle pattern in the sphere (right)

Figure 2.3. Koebe polyhedron and dual minimal surface

Figure 2.4. Koebe polyhedron and dual

2.1.1. Construction. The construction of a discrete minimal surface
is carried out in 4 steps. For the first step the curvatures line pattern for the
resulting surface or a fundamental piece of the surface is created. Figure 2.2
(left) shows the sketch of a simple quad grid curvature line pattern.

As for the Koebe polyhedra we construct the medial combinatorics and the
respective circle pattern in the sphere. This is step two of the creation
process. Figure 2.2 (right) shows the medial combinatorics and the circle
pattern for the sketched curvature lines.

14



Figure 2.5. Boundary conditions dual polyhedron

Figure 2.6. The possible boundary combinatorics

Step three produces a part of a Koebe polyhedron. Here we choose one of
the two possible polyhedra. The standard polyhedron has flat faces corre-
sponding to faces of the curvature line pattern, each consisting of four faces
of the quad-graph. The other polyhedron’s faces correspond to vertices of
the curvature line pattern. Figure 2.4 shows the standard polyhedron. A
face in the curvature line pattern results in a circle of the minimal surface.
Figure 2.3 shows the dual Koebe polyhedron, where vertices of the curva-
ture line pattern correspond to circles of the minimal surface. Technically
we use a vertex-face subdivision of the medial combinatorics to arrive at the
quad-graph of the Koebe polyhedron.

The last step assigns “+” and “-” edge labels according to the dualization
rule to the quad-graph. Then dualize the quad-graph with the discrete
Christoffel transform (Equation 8).

2.1.2. Boundary Conditions. The Koebe polyhedron is the discrete
analogon of the Gauss map of the minimal surface. Therefore straight as-
ymptotic lines and planar curvature lines are mapped to great circles by the
Gauss map. Thus we want the circle pattern on the sphere to be bounded
by great circles. Then the boundary of the resulting minimal surface will
be either a planar curvature line or a asymptotic line depending on the
combinatorics of the boundary.
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Figure 2.7. Asymptotic boundary

ϕ2

l

ϕ1

Figure 2.8. Curvature line boundary

An asymptotic boundary line is produced by orthogonally intersecting circles
whose centers lie on a great circle. Figure 2.7 shows such configuration. Since
eb is a boundary edge, the corresponding angle ϕb is equal to π. To make the
circles fit at such a boundary the parameter λe is equal to 1

2 for the edges of
ϕ1 and ϕ2. The centers of the circles after dualization lie on a straight line.
Figure 2.6 and 2.5 show an example for this kind of boundary. Three of the
four boundaries are straight asymptotic lines.

A curvature line boundary results from the combinatorics shown in Fig-
ure 2.8. Here the intersections of the circles at the boundary lie on a great
circle l. Again the angles at the boundary ϕ1 and ϕ2 are equal to π. Thus
the line l is a great circle and the dualized circles on the boundary form a
planar curvature line.

If the minimal surface is bounded by a straight asymptotic line, then it can
be continued smoothly by 180◦-rotation about it.

If the surfaces boundary is a planar curvature line, then reflection in this
plane continues the surfaces smoothly.

2.1.3. Umbilic Points. At an umbilic point a finite number of cur-
vature lines end. We model umbilic points at the boundary of our combi-
natorics and have to adjust the respective Φf . Decreasing Φf results in a
smaller angle of the circle pattern at the corner. A boundary edge takes
up π of the available angle. Thus having an extra vertex at a corner needs
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Figure 2.9. Umbilic point under the discrete Gauss map

Figure 2.10. Umbilic point with six discrete curvatures
lines originating

us to add π to the respective face. Figure 2.9 shows an umbilic point at
the corner of a quad grid mesh. Figure 2.10 is the corresponding discrete
minimal surface. Here six parts are used to form the umbilic point.

2.1.4. Visualization. A discrete minimal surface consists of conformal
squares, where each four of them form a quadrilateral with an inscribed
circle. The edges between centers and the intersections of touching circles
are a discrete analog of curvature lines. Drawing only the circles is enough
to provide information about the shape of surface. There is another way
to visualize the properties of the surface. The following Lemma gives the
motivation for this.

Lemma 2.1.5. (Touching Coins Lemma) Whenever four circles in 3-
space touch cyclically but do not lie on a common sphere, they intersect the
sphere which passes through the points of contact orthogonally.

Now additionally to the circles we can draw spheres intersecting the circles
orthogonally. In Figure 2.11 the circles and the spheres of a part of the
Schwarz P surface are drawn.
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Figure 2.11. Orthogonally intersecting circles and spheres

2.2. Implementation

We use the same algorithm as in the Koebe project to minimize the spher-
ical functional. Like in the Euclidean case, we use Newton’s method for
optimization. Since the spherical circle pattern functional is non-convex, we
have to start at a good initial value. Setting all ρ to −5 has proved to be a
good guess.

Once the correct radii for the circle patterns are computed, we determine the
positions on the sphere by an iterative layout algorithm. This algorithm is
essentially the same algorithm like in the Euclidean case. The only difference
is the rotation and the scaling which is carried out on the sphere. Here we
use the Möbius class of the jtem package [TBa] to perform the spherical
rotation and the scaling.

2.3. The Program

The program is designed to construct, visualize, and export discrete minimal
surfaces. After the program has been started the main window is displayed
(Figure 2.12). The leftmost section is the action library. It contains the
parts and tools of the creation process. You can double-click or drag actions
from the library to the creation plan in the center of the main window. The
creation plan is a list of actions which will be processed from top to bottom.
It is necessary to add the “Load Combinatorics” action at the top of the
creation plan. Below the creation plan there are buttons for deleting or for
changing the order of the actions. The right panel shows options for the
currently selected action of the creation plan. The lower section provides
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Figure 2.12. The minimal surface program

Figure 2.13. Load combinatorics options

the button to start the calculation process and shows the currently active
action as well as a process bar.

There are two ways to construct a discrete minimal surface. The first con-
structs a complete Koebe polyhedron using the Euclidean circle pattern
functional and dualizes it to create a minimal surface. The second method
constructs parts of Koebe polyhedra via the spherical functional. Thereby
boundary conditions can be specified.

2.3.1. Complete Koebe Polyhedron Method. To illustrate this
method we describe the creation of the Scherk tower as proposed in [BHS06].
We start with the combinatorics and add the “Load Combinatorics” action
to the creation plan. From the options section we choose the “Get From
Editor” option and press the “Show Graph Editor” button to bring up the
editor (Figure 2.13). Choose the edge tool ( ) from the tool bar and draw
the combinatorics of the Scherk tower (Figure 2.14). Now drag some vertices
to create an embedded version of the graph (Figure 2.15). We have to add
faces to get a ready-to-calculate structure ( ).

The next step in the creation process is the quad-graph of the Koebe poly-
hedron. Technically we compute the circle pattern on the sphere via the
“Create Medial Polyhedron” action ( ). Then we subdivide using a “Vertex-
Face-Subdivision” rule ( ) to arrive at the quad-graph of the Koebe poly-
hedron.
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Figure 2.14. Combinatorics editor and the Scherk tower graph

Figure 2.15. Embedded Scherk tower combinatorics

Figure 2.16. The Scherk tower creation plan

Finally we need to dualize the surface. Since the dualization step requires
the assignment of consistent edge labels (Proposition 2.1.3), we have to
introduce boundaries. The “Auto Cut Singularities” cuts the surface along
paths which include the singularities. Thus the edge labeling at an odd-
valent vertex becomes valid due to the double labeling of the split edge.
For the Scherk tower creation we omit the insertion of a double vertex as
proposed in [BHS06] and don’t calculate the asymptotic planes. At last
add the “Dualize Surface” ( ) action to the creation plan.

20



Figure 2.17. The Koebe polyhedron quad-graph and the
dual discrete minimal surface of the Scherk tower using a
coarse discretization

Figure 2.18. Schwarz’ CLP surface

Figure 2.16 is the final plan for the Scherk tower using the “Complete Poly-
hedron Method”. Press the “Construct Surface” button to invoke the calcu-
lation and show the surface rendering. The resulting surface and its Koebe
polyhedron are shown in Figure 2.17.

Having dualized the Koebe polyhedron, one obviously acquires only a part
of the desired surface. Since the Gauss map’s image is a multi-cover of the
sphere being branched at the singularities, one can reflect the surface about
its singular points to continue smoothly. The Scherk tower is simply periodic
so it can be continued in one direction. In the viewing window there are
tools for point reflection, reflection at a plane, and 180◦-rotation about a
straight line.

2.3.2. Spherical Calculation Method. This method is a little more
involved due to the different boundary conditions. What came for free in
the last method has to be specified precisely here. We describe the creation
of Schwarz’s CLP surface (Figure 2.18) .
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Figure 2.19. The medial combinatorics and boundary an-
gles of the Schwarz CLP surface
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Figure 2.20. Boundaries and umbilic points of the
Schwarz CLP surface under the discrete Gauss map

The medial combinatorics and the angles of the Schwarz CLP surface are
shown in Figure 2.19. We start with the medial graph and omit the medial
subdivision that was part of the “Complete Koebe Method”, as the subdivi-
sion step cannot handle the boundary correctly. In Image 2.20 the angles are
shown schematically. The Φ = 2π angle in Figure 2.19 produces a boundary
which is a part of a great circle while changing the combinatorial style from
curvature line to asymptotic line. This behavior produces a 180◦ turn of the
boundary since the polyhedron is the discrete analog of the Gauss map and
the asymptotic line will be perpendicular to the plane of the curvature line.

To specify the angles during calculation add the “Edit Boundary Condition
(Φ)” action to the creation plan. Alternatively we can enter the angles
directly using the tool in the graph editor.

Like before we now have to create the Koebe polyhedron by “Edge-Face-
Subdivision”and dualize the result to get a part of the Schwarz CLP surface.
Here we can choose either of the two possible polyhedra. The options of the
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Figure 2.21. A fundamental piece of the Schwarz CLP surface

Figure 2.22. A part of the Koebe polyhedron of Enneper’s surface

subdivision action decide whether to create circles for vertices or for faces of
the combinatorics. Both versions of a fundamental piece of the Schwarz CLP
surface are shown in Figure 2.21.

Again Schwarz’ CLP surface can be continued smoothly by reflection at the
planes of the boundary curvature lines or 180◦-rotation about the boundary
asymptotic lines.

2.4. Examples

To create a discrete analog of a smooth minimal surface, the combinatorics
of the curvature lines of a fundamental piece is required. The examples are
constructed using the spherical method, so the combinatorics of asymptotic
lines of the surface is needed. If the surface has umbilic points, then we have
to know the angle at which the curvature lines meet at this point.

2.4.1. Enneper’s Surface. The circle pattern for Enneper’s surface
is the stereographic projection (Equation 7) of the plane quadrilateral grid
with circles of the same radius (Figure 2.22). Figure 2.23 shows the minimal
surface of two different parts of this circle pattern. The program has an
extra action for Enneper type circle patterns on the sphere ( ).
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Figure 2.23. Enneper’s surface

Figure 2.24. The Schwarz P surface in different discretizations

2.4.2. Schwarz’ P Surface. A fundamental piece of the Schwarz P
surface is a square quad grid with three right angles and π

3 at the remaining
corner. At this umbilic point six curvature lines join. Figure 2.9 and 2.10
show the circle pattern and the surface at this point. Figure 2.24 shows
the usual visualization of the surface. Here the surface can be smoothly
continued by translation in either of the spatial directions.

Figure 2.25 shows unsymmetric versions created with the complete polyhe-
dron method. Here we use different discretization resolutions in all of the
directions (left) and in two directions (right).

2.4.3. The Scherk Tower. The creation of Scherk’s tower with the
polyhedron method is described in Section 2.3.1. There are some other
ways to approximate Scherk’s tower using the spherical method.

The surface is simply periodic and asymptotic to two intersecting planes.
The angle between the planes creates a 1-parameter family of surfaces. The
image of the Gauss map of a fundamental piece of the Scherk tower is a
hemisphere with four special points on the boundary. The special points
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Figure 2.25. Unsymmetric Schwarz P surface

Figure 2.26. Scherk’s tower symmetric version

Figure 2.27. Scherk’s tower unsymmetric version

Figure 2.28. From the plane to Scherk’s tower
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Figure 2.29. Scherk tower, medial combinatorics of a singularity

Figure 2.30. Gergonne’s surface by H. A. Schwarz [Sch90]
(left) and discrete analog (right)

correspond to points at infinity. Figure 2.28 shows an attempt to cope with
this behavior. As the angles at the corners approach π the vertices go to
infinity and form the asymptotic planes. These images are calculated using
the default square grid combinatorics and the “Medial Subdivision” action.
The resulting double edges at the corners have an angle of Φ = 2π − π

2 to
get the plane and theoretically Φ = 2π to obtain the Scherk tower. The
rightmost image of Figure 2.28 was created with an angle of Φ = 6.24. The
angle between the asymptotic planes is controlled by the ratio of columns
and rows of the combinatorics. In Figure 2.28 we use the symmetric version
with m = n.

We cannot calculate the surface for Φ = 2π because dualization maps the
infinitely small face on the hemisphere boundary to an infinitely large face
that forms a part of the asymptotic plane. To overcome this problem we can
use a different combinatorics. We delete the decreasing face from the graph
and connect the remaining faces. A part of the resulting combinatorics is
shown in Figure 2.29. This combinatorics however results in a three-valent
vertex after quad-graph generation. Use the “Auto Cut Singularities” action
and the “To Boundary Only” option to get a dualizable surface.

The unsymmetric example in Figure 2.27 has parameters m = 12, n = 7.

2.4.4. Gergonne’s Surface. Gergonne’s surface is a triply periodic
surface whose fundamental piece divides the cube into two equal regions
(Figure 2.30). We construct only a fourth of this part as the symmetry allows
to rebuild the surface by reflection. The height of the cube is controlled by
the ratio of rows and columns in the combinatorics (Figure 2.32). The most
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Figure 2.31. Gergonne’s Surface m < n (left) and m = n (right)

Φ = 2π − π
2

Φ = 2π − π
2

Φ = 2π + π
4 n

m

Figure 2.32. The medial combinatorics and angles of Ger-
gonne’s surface

Figure 2.33. Fundamental piece of Gergonne’s surface

symmetric surface is the case m = n, in Figure 2.31 it is m < n on the left
and m = n on the right.

2.4.5. Schwarz’ D Surface. The Schwarz D surface is a triply periodic
surface whose fundamental piece is bounded by the edges of a cube. It has
an umbilic point at the center (Figure 2.34 right). Again we exploit the
symmetry to reduce the complexity of the combinatorics for the calculation.
Here we introduce a singular point that does not lie at a corner of the
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Figure 2.34. Schwarz’ D Surface, fundamental piece (right)
and larger surface obtained by reflection (left)
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Figure 2.35. Medial combinatorics and angles of the
Schwarz D surface

graph (Figure 2.35). There are no ratio parameters in this surface, only the
resolution of the discrete surface can be defined.

The Schwarz D surface can also be created using the“Complete Polyhedron”
method. Here the combinatorics is a subdivided tetrahedron.

2.4.6. Schwarz’ H Surface. Like the P and D surface the Schwarz H
surface is triply periodic. A fundamental piece is bounded by two parallel
equilateral triangles. The distance of the triangles creates a 1-parameter
family of surfaces. The medial combinatorics is similar to Gergonne’s sur-
face. Gergonne’s quad-graph is the Schwarz H medial graph and vice versa.
Figure 2.37 shows the combinatorics of the circle pattern on the sphere. The
parameters in Figure 2.36 are n = 3, m = 5 (left) and n = 5, m = 3 (right).

2.4.7. Neovius’ Surface. Neovius’ surface is triply periodic. The fun-
damental piece is similar to the one of the Schwarz P surface only the angles

28



Figure 2.36. Schwarz’ H surface
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Figure 2.37. Medial combinatorics and angles of the
Schwarz H surface

Figure 2.38. Neovius’ surface

are different (Figure 2.39). There are three umbilical points at the corners
of a fundamental piece after reflection. Two of those have eight curvature
lines meeting and the third has six (Figure 2.40).

2.4.8. Quadrilateral Frame. Given the aspect ratio and the angles
of a quadrilateral, what is the minimal surface with this boundary? The
curvature line pattern is easy to draw since the four asymptotic lines are
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Figure 2.39. Circle pattern combinatorics of Neovius’ surface

Figure 2.40. Fundamental piece of Neovius’ surface

Figure 2.41. Quadrilateral minimal surface by H. A.
Schwarz [Sch90] (left) and discrete analog (right)

already fixed. The medial combinatorics, which is also the asymptotic line
pattern, is shown in Figure 2.43.
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Figure 2.42. Quadrilateral boundary frame
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Figure 2.43. Medial combinatorics of the quadrilateral surface

Figure 2.44. Schoen’s I-6 surface (left) and generalized ver-
sion (right)

2.4.9. Schoen’s I-6 Surface. Take two parallel copies of a rectangle.
What is the minimal surface bounded by these polygons. By construction
Schoen’s I-6 surface has three planes of symmetry. Thus we need to calculate
only an eighth of the surface and obtain the remainder by reflection if we take
squares to start with. The medial combinatorics of Schoen’s I-6 surface is the
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Figure 2.45. Medial combinatorics of the generalized
Schoen I-6 surface.

Figure 2.46. Cuboid boundary polygons

same as for Schwarz’ H surface. Just the angle on left becomes 2π+ π
4 to get

a fundamental piece of Schoen’s surface. If we want a general rectangle we
have to use a different combinatorics. Figure 2.45 shows the combinatorics
of a general Schoen I-6 surface. The ratio of the rectangle is controlled by
the ratio of n and k. The distance of the rectangles depends on m. The
right example in Figure 2.44 has n = 9, m = 7 and k = 5.

2.4.10. Cuboid Boundary Frame. Figure 2.46 shows discrete mini-
mal surfaces with a boundary of a cuboid. These surfaces have two planes
of symmetry and we need to calculate a fourth to get a fundamental piece.
Figure 2.47 illustrates the corresponding combinatorics.

2.4.11. Catenoid Approximations. A catenoid can be constructed
as the minimal surface spanned by two parallel circles of the same radius.
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Figure 2.47. Medial combinatorics of the cuboid boundary surface

Figure 2.48. Catenoid approximations

We approximate these circles by using regular n-gons and the medial com-
binatorics of the Schwarz H surface or the Schoen I-6 surface. In fact the
Schwarz H or the Schoen I-6 surface are approximations to the discrete
catenoid as well. Here the ratio of m and n specifies the calculated part of
the catenoid.

For a generalization of this approximation process we can use non-regular
polygons as a discrete analog of the circle (Figure 2.49). Here we use the
combinatorics of the generalized Schoen I-6 surface.
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Figure 2.49. Non-regular catenoid approximation
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CHAPTER 3

Alexandrov’s Theorem

The article [BI06] provides a new poof of Alexandrov’s theorem. We im-
plemented an algorithm following the constructive proof of the article. In
the end the user could enter some metric via editor or file and calculate
the corresponding polyhedron which realizes this metric on its boundary. In
the first section we summarize the theorems and definitions needed for the
implementation. We give the necessary equations to calculate angles and
lengths.

3.1. Theory

The central theorem of this part is Alexandrov’s theorem.

Theorem 3.1.1. Let M be a sphere with a convex Euclidean polyhedral met-
ric. Then there exists a convex polytope P ⊂ R3 such that the boundary of
P is isometric to M . Besides, P is unique up to a rigid motion.

The goal of our implementation is to construct the polytope for the given
metric. Fist we have to clarify some definitions to understand how we can
represent such a metric structure. In [BI06] we find the corresponding
definitions:

Definition 3.1.2. An Euclidean polyhedral metric on a surface M is a
metric structure such that any point x ∈M possesses an open neighborhood
U with one of the following properties. Either U is isometric to a subset of
R2, or there is an isometry between U and an open subset of a cone with
angle α 6= 2π such that x is mapped to the apex. In the first case x is called
a regular point, in the second case it is called a singular point of M . The
set of singular points is denoted by Σ.

If for any x ∈ Σ the angle at x is less that 2π, then the Euclidean polyhedral
metric is said to be convex.

Usually one defines such a metric with the help of a triangulation of the
sphere which has a length assigned to each edge. Here the triangle inequality
has to hold for every triangle of the triangulation. Then a point in the
interior of a triangle is clearly surrounded by a part of R2. The vertices
of the triangles play the role of the cone points. The cone angle is just
the sum of angles in the triangles at this point. Only vertices with a cone
angle 6= 2π are considered, then these vertices are the singularities of the
metric. A point on an edge of the triangulation is contained in an Euclidean
neighborhood as well since we don’t change distances if we flatten this edge.
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Figure 3.1. Angles and lengths of a generalized polytope

We can easily provide an editor or a file format for such a representation,
see the program section for a description.

In the article such a construction is called a geodesic triangulation. Using
this object we can define a structure essential to the construction process.

The singular points in Σ are denoted by i, j, k, . . . . An edge connecting
vertex i and vertex j is denoted by ij. Consequently we write ijk denoting
the triangle with the vertices i, j, and k. Assign radii r = r1, . . . , rn such
that there exist pyramids with base ijk and edge lengths ri, rj , rk. These
pyramids are then glued following the combinatorics of the triangulation.
Since consecutive radii end at the same peak, all radii are glued to one point
called the apex of the generalized polytope. See Figure 3.1 for notations.

Let T be a geodesic triangulation.

Definition 3.1.3. A generalized polytope with boundary M is an equiv-
alence class of couples (T, r) as above, where two couples are equivalent if
and only if there is an isometry between the resulting polyhedra which is
identical on the boundary and maps the apex to the apex. A generalized
convex polytope is a generalized polytope such that θij ≤ π for any edge ij
in some (and hence in any) associated triangulation.

A generalized convex polytope is uniquely defined by it’s radii, see [BI06].
Let P(M) be the space of generalized convex polytopes. The radii of the
polytope then define a parametrization on this space. But not all possible
radii create a generalized convex polytope, thus there are constraints on the
set of possible radii. Therefore we identify P(M) with the set of admissible
radii in the remainder of this text. We are now able to define the curvature
of a generalized convex polytope.

For an interior edge connecting a vertex i and the apex a the curvature at
this edge is defined as

κi := 2π − ωi.

Furthermore define
θij := αij + αji.
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γ1

γ2

γ1 + γ2 ≤ π

Figure 3.2. Local Delaunay condition

The curvature of a generalized polytope is a vector valued function which
takes the radii as arguments. It is

κ : P(M)→ Rn

where n is the number of vertices in the triangulation.

To compute the curvature at a given vertex we need expressions for ωi. It is

cos ωijk =
cos γijk − cos ρij cos ρik

sin ρij sin ρik

and ωi is the sum of all angles at edge ia. The formula for ρ is

cos ρij =
l2ij + r2

j − r2
i

2lijrj
.

The Jacobian of the curvature is given by
∂κi

∂rj
=

cot αij + cot αji

lij sin ρij sin ρji

∂κi

∂ri
= −

∑
i6=j

cos ϕij
∂κi

∂rj
,

where
cos αij =

cos ρik − cos γijk cos ρij

sin γijk sin ρij

and ∂κi
∂rj

= 0 if ij is not an edge of the triangulation. If there are multiple
edges or loops, then the formulas have to be modified, see [BI06].

The algorithm described in this work operates on generalized convex poly-
topes. If for a generalized convex polytope κi = 0 holds for all i, the polytope
can be embedded into R3 and thus be visualized as a convex polytope. This
is also the idea of the algorithm. Starting with sufficiently large and equal
ri, we modify these radii so that the curvature decreases for all internal
edges. To start with a convex polytope we need a special triangulation, the
Delaunay triangulation.

Definition 3.1.4. A geodesic triangulation of a surface with a polyhedral
metric is called a Delaunay triangulation if every edge is locally Delaunay.
An edge is called locally Delaunay if the following condition holds

γ1 + γ2 ≤ π

where γ1 and γ2 are angles in the adjacent triangles of the edge (Figure 3.2).
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Figure 3.3. Flipping ab to cd

Algorithm 1 DelaunayTriangulation

Require: stack S with all marked edges
1: while S is non-empty do
2: pop ab from S and unmark it
3: if ab not locally Delaunay then
4: Flip ab tocd
5: for xy ∈ ac, cb, bd, da do
6: if xy is not marked then
7: mark xy and push it on S
8: end if
9: end for

10: end if
11: end while

There is an algorithm described in [Ede01] pp. 7-9 that transforms an
arbitrary triangulation into a Delaunay triangulation (Algorithm 1). The
algorithm uses the flip transformation. The length of the flipped edge is
then

l′2 = l2a + l2d − 2lblc cos α. (10)
Figure 3.3 explains the notations at the affected triangles.

If T is a Delaunay triangulation, there is an R > 0 such that the generalized
polytope with radii (R, . . . , R) is convex. For a convex polytope it is always

rank
dκ

dr
= n

if the following condition holds

0 < κi < δi ∀i (11)

where δi is the angle defect at vertex i, it is δi := 2π −
∑

jk∈lki γijk. This is
important as we want to solve equations of the form κ(r̃) = κ̃ by lineariza-
tion.

It is shown that there is always a deformation κ (1−δ)κ that reduces the
curvature at every vertex such that the generalized polytope (T, r) exists
and is convex up to a single edge which may be locally concave. This edge
can be made convex by flipping and resizing using Equation 10. Here δ
is some factor in the range (0, 1), thus the condition 11 stays valid during
deformation. In symmetric cases there may be situations in which there
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are more than one edges getting concave at the same time. These cases
can be handled by a slightly modified version of the algorithm, see the
implementation section.

The algorithm runs now as follows: From the given triangulation T and
the assigned edge lengths, which are assumed to define a convex polyhedral
metric, we calculate the Delaunay triangulation and determine radii R such
that the generalized polytope (T,R) is convex. In [BI06] it is shown that
this is always possible. Then calculate the curvature κ(r) and choose a κ̃ <
κ(r). Solve the equation κ(r̃) = κ̃ with a Newton solver. If the generalized
polytope (T, r̃) is convex, then we can proceed and set r ← r̃. If not, but
there is exactly one concave edge, then we may fix the convexity by flipping
this edge and proceed normally. If we find more than one edges to be locally
concave, then we have to choose an κ̃ which is nearer to κ(r) and repeat the
last steps. [BI06] shows that there is always a path that takes the curvature
κ to zero while preserving the convexity of the generalized polytope.

Once arrived at κ ≈ 0, we are no longer forced into imagining some abstract
polytope. We can start to construct (embed) a convex polytope that realizes
the input metric on its boundary. The construction algorithm is an itera-
tive calculation which starts with an edge and enumerates the boundary by
successive determination of the opposite vertex.

3.2. Implementation

Algorithm 2 AlexandrovsPolyhedron

Require: T ′, ε, δmax

1: T ← DelaunayTriangulation(T ′)
2: r ← (R, . . . , R), such that (T, r) is convex
3: δ ← δmax

4: κ̃ ← (1− δ) · κ(r)
5: while ‖ κ(r) ‖> ε do
6: if κ(r̃) = κ̃ is solvable for T then
7: if (T, r̃) is convex then
8: (T, r) ← (T, r̃)
9: δ ← δmax

10: else if (T, r̃) has exactly one concave edge ij then
11: Flip ij in T
12: continue
13: else if (T, r̃) has more that one concave edge then
14: δ ← δ2

15: end if
16: else
17: δ ← δ2

18: end if
19: κ̃ ← (1− δ) · κ(r)
20: end while
21: return (T, r)

39



Algorithm 2 shows the algorithm as a direct translation of the ideas of the
theory section. Line 6 of AlexandrovsPolyhedron requires solving the
non linear system

κ(r̃) = κ̃.

This system is solved using a Newton solver. Here for every step solve the
linearized system

Jκ(r̃) · r = κ̃.

Then choose a step-width δ such that the residual decreases and continue
until r̃ is sufficiently near at the real solution in terms of a small residual.
This algorithm works for many examples, but is rather slow when many
edge flips occur. For the creation of large models we use a modification of
this algorithm.

Algorithm 3 AlexandrovsPolyhedronFast

Require: T ′, ε, δmax

1: T ← DelaunayTriangulation(T ′)
2: r ← (R, . . . , R), such that (T, r) is convex
3: δ ← δmax

4: κ̃ ← (1− δ) · κ(r)
5: while ‖ κ(r) ‖> ε do
6: if κ(r̃) = κ̃ is solvable for T then
7: C ← set of concave edges
8: if C is empty then
9: (T, r) ← (T, r̃)

10: δ ← δmax

11: else
12: for ij ∈ C do
13: Flip ij
14: end for
15: continue
16: end if
17: else
18: undo flips from the last iteration if there are any
19: δ ← δ2

20: end if
21: κ̃ ← (1− δ) · κ(r)
22: end while
23: return (T, r)

It appears that in most steps the generalized polytope remains convex even
if we flip more that one edge to recover the local convexity. This leads to
the idea to try flipping all concave edges and undo these flips if we did not
succeed in creating a convex generalized polytope. Algorithm 3 illustrates
this idea. In fact this approach has proved to be substantially faster than
Algorithm 2. This algorithm can handle the symmetric cases mentioned
above.
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Figure 3.4. Screenshot of the Alexandrov polytope editor program

Listing 3.1
<?xml version=”1 .0 ” encoding=”ISO−8859−1”?>

< !DOCTYPE convexPolyhedra lMetr ic>

<cpml d e s c r i p t i o n=”de f au l t te t rahedron ”>

<e d g e l i s t>

<edge l ength=”1 .0 ”>

<property name=”hidden ” type=”boolean ” value=”true ”/>

</edge>

<edge l ength=”1 .0 ”/>

<edge l ength=”1 .0 ”/>

<edge l ength=”1 .0 ”/>

<edge l ength=”1 .0 ”/>

<edge l ength=”1 .0 ”/>

</ e d g e l i s t>

< t r i a n g l e l i s t>

<t r i a n g l e a=”0 ” b=”1” c=”4”/>

<t r i a n g l e a=”2 ” b=”5” c=”1”/>

<t r i a n g l e a=”3 ” b=”2” c=”0”/>

<t r i a n g l e a=”5 ” b=”3” c=”4”/>

</ t r i a n g l e l i s t>

</cpml>

3.3. The Program

The program“Alexandrov Polytope Editor” is laid out like the “Koebe Poly-
hedron Editor”. The left section shows the graph designer where the com-
binatorics and edge lengths are entered. The right section is the 3D viewer
for the resulting polytope (Figure 3.4).

There is a file format to specify a convex polyhedral metric. The CPML
(Convex Polyhedral Metric Markup Language) file format is an XML for-
mat that defines such a polyhedral metric using triangles and edge lengths.
Listing 3.1 shows an example of the file format.

3.3.1. Testing the Algorithm. The first thing to do after the algo-
rithm is completely debugged is to establish a testing environment. We use
the combinatorics of the icosahedron for our tests. Then we assign random
lengths in the range of 1

3 to 1 to the edges. If the metric is convex, then we
start the calculation and display the resulting polyhedron. To initiate the
tests press the button in the toolbar of the graph editor ( ).
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Figure 3.5. A Reuleaux Triangle

Figure 3.6. The Reuleaux-Triangle D-Form, here two
Reuleaux triangles are glued together to form a D-Form

3.4. Examples

3.4.1. D-Forms. A D-Form is a convex three dimensional shape whose
boundary consists of two developable surfaces bordered by closed curves
of equal length. See [Bou] for a detailed description of this construction
process and further examples. Since the individual parts of a D-Form are
developable, the metric is flat and does not need to have vertices at other
places that the boundary. Therefore we construct such a surface using a
triangulation of the area inside the flat curves forming the boundary of each
part. We use the Euclidean metric of the plane to assign edge lengths. The
parts need to have the same number of edges on the boundary. For the sake
of simplicity we use a discretization of the boundary which has constant
edge length.

Figure 3.6 shows Reuleaux D-Forms. Here two Reuleaux triangles are identi-
fied along their boundary. A Reuleaux triangle is a shape of constant width,
Figure 3.5. In the left part of Figure 3.6 the vertices of one Reuleaux triangle
are glued to the midpoints of the sides of the other. In the right part of the
figure a different position for the points on the edges is chosen.

The next example glues a circle to an equilateral triangle. Again the triangle
and the circle have the same boundary length and the same number of edges
at the boundary. Figure 3.7 shows the resulting polytope.

3.4.2. The Reuleaux-Triangle-Tetrahedron. The Reuleaux-Triangle-
Tetrahedron is a generalization of the D-Form concept. Here we take four
Reuleaux triangles and identify them along their sides. Three vertices of in-
dividual triangles meet at a point to give a curved tetrahedron. We created
a model of this surface using a 3D printed (Figure 3.9).
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Figure 3.7. A D-Form created by glueing a circle to a triangle

Figure 3.8. The Reuleaux-Triangle-Tetrahedron

Figure 3.9. Models of the Reuleaux-Triangle-Tetrahedron
printed by a 3D plaster printer
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The program provides generators for all three examples. Change the mode
of the application to“CPML Editor”by the selecting the“Mode”menu entry
from the menu bar. Then select the combinatorial type you want to generate
( , , ).
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CHAPTER 4

The Software

4.1. The Half-Edge Data Structure API

The presented algorithms work on polyhedral data, and the usual way of rep-
resenting such data is the indexed face set. This representation directly maps
to current computer hardware thus provides fast rendering methods. On the
other hand it doesn’t encode combinatorial information directly. Such in-
formation is for example edge-vertex or face-vertex incidences. To handle
such tasks efficiently we use a half-edge data structure. Figure 4.1 shows the
Weiler graph of the data structure used in this implementation. An edge of
the graph represents data saved in the start-node of the edge. Figure 4.2
shows the data stored in the nodes. The half-edge data structure API is
contained in the package “halfedge” which is available on CD-ROM (Sec-
tion 4.2). We believe this implementation can be helpful to other projects

1
1

1
1

3

HE

V F

Figure 4.1. Weiler graph of the half-edge data structure
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2

3

3

4

5 7

6
6

7

5
2

1

1 - Incident edge
2 - Next half-edge
3 - Previous half-edge
4 - Opposite half-edge
5 - The target vertex
6 - The left face of the half-edge
7 - One boundary edge of the face

Figure 4.2. The half-edge data structure
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Listing 4.1
import ha l f edge . HalfEdgeDataStructure ;

public c lass MyHEDS extends HalfEdgeDataStructure <

MyVertex ,

MyEdge ,

MyFace

> {
private stat ic f ina l long

se r ia lVers ionUID = 1L ;

public MyHEDS( ) {
super (MyVertex . class , MyEdge . class , MyFace . class ) ;

}
}

Listing 4.2
import ha l f edge . Vertex ;

public c lass MyVertex extends Vertex<MyVertex , MyEdge , MyFace> {
private stat ic f ina l long

se r ia lVers ionUID = 1L ;

protected MyVertex getThis ( ) {
return this ;

}
}

Listing 4.3
import ha l f edge . Edge ;

public c lass MyEdge extends Edge<MyVertex , MyEdge , MyFace> {
private stat ic f ina l long

se r ia lVers ionUID = 1L ;

protected MyEdge getThis ( ) {
return this ;

}
}

as well so we describe the main functionality and a few getting started steps.
In the remainder of this section class names are printed in capital letters.

The HalfEdgeDataStructure class is the container that stores all the
nodes of the graph. It manages the creation and removal of nodes. All ver-
tices, edges, and faces are stored in array-lists thus have constant time access
by index. The container class is a generic class and is not intended to be
used as is. The standard usage is to subclass the HalfEdgeDataStruc-
ture class and use your own implementations of Vertex, Edge, and Face.
Listings 4.1-4.4 show an implementation example of the needed classes. An
example of the usage is Listing 4.5. You can use the FaceByFaceGener-
ator by Markus Schmies to construct a valid surface successively.

To access adjacency information, the node classes contain various methods
which are implemented in the abstract base classes. The following list de-
scribes the vertex, edge, and face adjacency actions. The vertex adjacency
methods are:

getConnectedEdge(): a half-edge with the vertex as target
getVertexStar(): all neighbor vertices
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Listing 4.4
import ha l f edge . Face ;

public c lass MyFace extends Face<MyVertex , MyEdge , MyFace> {
private stat ic f ina l long

se r ia lVers ionUID = 1L ;

protected MyFace getThis ( ) {
return this ;

}
}

Listing 4.5
import ha l f edge . generator . FaceByFaceGenerator ;

public c lass Test {
public stat ic void main ( St r ing [ ] a rgs ) {

MyHEDS heds = new MyHEDS( ) ;

MyVertex v1 = heds . addNewVertex ( ) ;

MyVertex v2 = heds . addNewVertex ( ) ;

MyVertex v3 = heds . addNewVertex ( ) ;

MyVertex v4 = heds . addNewVertex ( ) ;

FaceByFaceGenerator<MyVertex , MyEdge , MyFace>

gen = new FaceByFaceGenerator

<MyVertex , MyEdge , MyFace>(heds ) ;

gen . addFace ( v1 , v2 , v3 , v4 ) ;

System . out . p r i n t l n ( heds ) ;

}
}

getEdgeStar(): all adjacent half-edges with the vertex as target
getFaceStar(): all adjacent faces

The half-edge adjacency methods are

getTargetVertex(): the target vertex
getStartVertex(): the start vertex
getNextEdge(): the next half-edge
getPreviousEdge(): the previous half-edge
getOppositeEdge(): the opposite half-edge
getLeftFace(): the face on the left of the half-edge
getRightFace(): the face on the right of the half-edge

And the face adjacency methods are

getBoundaryEdge(): a half-edge from the boundary of the face
getBoundary(): the half-edges that form the boundary.

If an half-edge is in the boundary of some face, then the latter is considered
to be “left of” this edge. Thus the method getLeftFace() always returns a
face whose boundary contains the edge.

The class hierarchy’s root is the abstract class Node (Figure 4.3). The
abstract classes Vertex, Edge, and Face are subclasses of this base class.
To provide type safety these classes are generic. The signature of the type
Node includes parameters for vertex, edge, and face types (Listing 4.6), and
the derived classes extend the Node class but don’t substitute the generic
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Listing 4.6
public abstract class Node

<

V extends Vertex<V, E, F>,

E extends Edge<V, E, F>,

F extends Face<V, E, F>

>

Listing 4.7
public abstract class Vertex

<

V extends Vertex<V, E, F>,

E extends Edge<V, E, F>,

F extends Face<V, E, F>

>

extends Node<V, E, F>

Figure 4.3. Half-edge Data Structure UML

parameters (Listing 4.7). The signatures of the classes Edge and Face are
defined in the same way. To allow correct type inference the node classes
are parametrized with the corresponding vertex-edge-face triple.

4.2. CD-ROM

The included CD-ROM contains all necessary libraries and programs to run
the software described in Chapter 1, 2, and 3 with WindowsTM or Linux.
Figure 4.4 shows the directory structure of the CD-ROM. With WindowsTM

an autostart script runs the software directly after insertion of the CD-
ROM. Use the bin/DiplomaThesis.bat script to start the program manually.
With Linux you can use the start script bin/DiplomaThesis.sh to start the
software. Figure 4.5 shows the start program, you can start the programs
or view this document directly by pressing the corresponding button.
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/ Contains this document as PDF file
/bin Start scripts
/data Examples from the text
/lib Java jar libraries
/src Source files
/native Native OpenGL binding libraries for Java
/jre Java runtime for WindowsTM

Figure 4.4. The CD-ROM directories

Figure 4.5. The starter program
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APPENDIX A

Zusammenfassung

In dieser Arbeit beschreiben wir die Theorie und Implementation von drei
verschiedenen Computerprogrammen. Der erste Teil der Arbeit beschäftigt
sich mit Koebe-Polyedern, das sind Polyeder, deren Kanten tangential zur
Einheitssphäre sind. Die Berechnung solcher Polyeder basiert auf orthog-
onalen Kreismustern auf der Sphäre. Hierbei schneiden sich die Kreise or-
thogonal und bilden eine Überdeckung der ganzen Sphäre. Solche Kreis-
muster, sowie Variationsprizipien zur Berechnung, werden in [BS04, Spr03]
beschieben. Ein orthogonales Kreismuster auf der Sphäre ist hierbei bis auf
Rotation eindeutig durch die Radien der Kreise beschrieben. Einem or-
thogonalen Kreismuster ist nun ein eindeutiges Koebe-Polyeder mit gleicher
Kombinatorik zugeordnet. Wir präsentieren Software zur Berechnung von
Koebe-Polyedern, die auch auf der beigelegten CD enthalten ist.

Der zweite Teil der Arbeit beschreibt die Berechnung von diskreten Mini-
malflächen. Wir orientieren uns an den Ausführungen in [BHS06]. Eine
diskrete Minimalfläche ist genau wie ihr glattes Vorbild dual zum Bild der
Gauß-Abbildung. Die Dualitätstransformation ist analog zum glatten Fall
die diskrete Christoffel-Transformation. Das diskrete Analogon zum Bild
der Gauß-Abbildung sind kantentangentiale Polyeder also Koebe-Polyeder.
Diese Definition bildet die Verbindung zwischen dem ersten und dem zweiten
Teil. Aus diesem Grund benutzt die Software für diesen Teil die Algorithmen
und Datenstrukturen des ersten Teils. Wir beschreiben die Funktionweise
des Programms anhand von einigen Beispielen.

Im dritten Teil wenden wir uns Polyedern zu, die durch ihre Metrik auf
dem Rand definiert sind. Der Satz von Alexandrov sagt aus, dass zu jeder
konvexen polyedrischen Metrik ein eindeutiges konvexes Polyeder gehört,
welches diese Metrik auf seinem Rand realisiert. [BI06] enthält einen kon-
struktiven Beweis dieses Satzes, mit dessen Hilfe ein Algorithmus zur Berech-
nung von Polyedern aus gegebener Metrik erstellt wurde. Wir präsentieren
verschiedene Versionen dieses Algorithmuses und diskutieren Ergebnisse an-
hand von Beispielen. So berechnen wir einige D-Forms, das sind abwick-
elbare Flächen mit geschlossener Randkurve gleicher Länge, die am Rand
identifiziert sind. Eine Veralgemeinerung hiervon ist das Reuleaux-Dreieck-
Tetraeder, welches aus vier Reuleaux-Dreiecken zusammengeklebt ist.

Im letzten Teil beschreiben wir die Datenstruktur, die in allen Programmen
verwendet wird, um polyedrische Daten zu speichern und zu verarbeiten.
Hierbei handelt es sich um eine Half-Edge Datenstruktur. Diese hat die
Eigenschaft die wichtigsten kombinatorischen Informationen in konstanter
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Zeit liefern zu können. Wir demonstrieren anhand von Beispielimplementa-
tionen die Verwendung dieser Datenstruktur.
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